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Results

1 OWF + iO =⇒ iOWF

2 OWF + sub-exponential iO =⇒ TDP
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Why these results are interesting

OWF + iO =⇒ iOWF
OWF + sub-exponential iO =⇒ TDP

• Minimizing assumptions Ex: from BPR+GPS paper
presented by Mark and Ashvin, we know that iOWF + iO
=⇒ hardeness of SVL
Using the first result: OWF + iO =⇒ hardness of SVL

• Technique used to prove the second result relies on
techniques developed in BRP to construct hard instance of
SVL

• Perfect structure on the edge of chaos?

• Previous TDP candidates would all be broken if factoring
is broken/in SZK =⇒ gives new direction to build TDP
(assuming we can build iO)
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First result

OWF + iO =⇒ iOWF

Two steps:

1 OWF =⇒ SIOWF

2 SIOWF + iO =⇒ iOWF
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SIOWF
OWF =⇒ SIOWF

Definition: Sometime injective OWF

SIOWF = {fK : {0, 1}n → {0, 1}∗,K ∈ {0, 1}k(n)}
∀K , ∃IK such that ∀x ∈ IK , f

−1(f (x)) = {x}

1 Sometimes injectiveness:

PK ,x(x ∈ IK ) ≥
1

p(n)

2 One-wayness over injective subdomain
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Construction of SIOWF
OWF =⇒ SIOWF

Let g : {0, 1}∗ → {0, 1}∗ be a OWF

• K = (S , e) where e ← [n] and S is a random seed for a
hash function hS : {0, 1}n → {0, 1}e+1 in a n-wise
independant family of hash functions.
(can be instantiated using degree n polynomial over some
large field, see appendix)

• fK (x) = (g(x), hS(x))
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Construction of IOWF
SIOWF + iO =⇒ iOWF

Ingredients:

• iO (for P/poly)

• PRF a family of puncturable PRFs (known from OWF)

• (COM1,COM2) a two message perfectly binding
commitment scheme (known from OWF)
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Puncturable PRF
SIOWF + iO =⇒ iOWF

PRF = {fS : {0, 1}p(n) → {0, 1}n, S ∈ {0, 1}q(n)}
With poly-time algo Punc(S , x) that outputs a punctured key
Sx such that:

1 Functionality is preserved under puncturing: ∀x∗ :

PS←κ(1n)(∀x ̸= x∗, fS(x) = fSx∗ (x)) = 1

2 Indistinguishability at punctured points:

|P(D(x∗,Sx∗ , fS(x
∗)) = 1)− P(D(x∗,Sx∗ , u) = 1)| ≤ negl

where S ← κ(1n) and u ← {0, 1}n
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Commitment scheme
SIOWF + iO =⇒ iOWF

Method that allows a user to commit to a value while keeping
it hidden, and while preserving the user’s ability to reveal the
committed value later (takes randomness as input).

2 properties:

1 Hiding: It should be hard to distinguish between a
commitment to x and to y :

Cr (y) ≃ Cr (x)

2 Binding: There should be no way for a person who
commits to one bit, to claim that he has committed to
another value later:

Cannot find r0, r1 such that Cr0(x) = Cr1(y)
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2 message commitment scheme
SIOWF + iO =⇒ iOWF

1 COM1 samples message M1 ← COM1(1
n)

2 COM2 outputs a commitment M2 to plaintext x ∈ {0, 1}n
with respect to M1 and randomness r :
M2 ← COM2(x ,M1, r)

The 2 message commitment scheme that we will be using is
perfectly binding (used to prove injectiveness) and
computationally hiding (used to prove one-wayness)

Existence of such a scheme from PRG
We use 2 messages for the perfectly binding condition (see
appendix).
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Construction of IOWF
SIOWF + iO =⇒ iOWF

The function family:
For M1 ← COM1(1

n), S ← κ(1n), let CM1,S : {0, 1}n → {0, 1}∗

CM1,S(x) = COM2(x ,M1, fS(x))

• Key K = C̃ ← iO(CM1,S)

• The function is given by OWFK (x) = C̃ (x)
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Proof intuition
SIOWF + iO =⇒ iOWF

CM1,S(x) = COM2(x ,M1, fS(x))

Injectivity follows from the fact that the commitment scheme is
perfectly binding.

If we had VBB obfuscation instead of iO =⇒ same as
interacting with black-box version of C with true randomness.
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Proof of (weak) one wayness
SIOWF + iO =⇒ iOWF

First step: We define a new circuit:
Let Sx∗ = Punc(S , x∗)

C1(x) =

{
COM2(x ,M1, fSx∗ (x)) if x ̸= x∗

COM2(x
∗,M1, fS(x

∗)) if x = x∗

By the iO guarantee:

p1 = |P(A(C̃ , C̃ (x∗)) = x∗)− P(A(C̃1, C̃1(x
∗)) = x∗)| ≤ negl
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Proof of (weak) one wayness
SIOWF + iO =⇒ iOWF

Second step: We define a new circuit:

C2(x) =

{
COM2(x ,M1, fSx∗ (x)) if x ̸= x∗

COM2(x
∗,M1, r) if x = x∗

with r ← {0, 1}n

By pseudorandomness at punctured points:

p2 = |P(A(C̃1, C̃1(x
∗)) = x∗)− P(A(C̃2, C̃2(x

∗)) = x∗)| ≤ negl
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Proof of (weak) one wayness
SIOWF + iO =⇒ iOWF

Third step: We define a new circuit:

C3(x) =

{
COM2(x ,M1, fSx∗ (x)) if x ̸= x∗

COM2(0
n,M1, r) if x = x∗

with r ← {0, 1}n

By the computational hiding of the commitment:

p3 = |P(A(C̃2, C̃2(x
∗)) = x∗)− P(A(C̃3, C̃3(x

∗)) = x∗)| ≤ negl
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Proof of (weak) one wayness
SIOWF + iO =⇒ iOWF

Fourth step: We define a new circuit:

C4(x) =

{
COM2(x ,M1, fS(x)) if x ̸= x∗

COM2(0
n,M1, r) if x = x∗

with r ← {0, 1}n

By the iO guarantee:

p4 = |P(A(C̃3, C̃3(x
∗)) = x∗)− P(A(C̃4, C̃4(x

∗)) = x∗)| ≤ negl
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Proof of (weak) one wayness
SIOWF + iO =⇒ iOWF

Fifth step: We define a new circuit:
Let SIOWF be a family of sometime injective one way
functions with efficient key sampler κ′.
Let K ′ ← κ′(1n) and gK ′ the associated SIOWF.

If x∗ ∈ IK ′ :

C5(x) =

{
COM2(x ,M1, fS(x)) if gK ′(x) ̸= gK ′(x∗)

COM2(0
n,M1, r) if gK ′(x) = gK ′(x∗)

with r ← {0, 1}n
Else: C5 = C4

By injectiveness of gK ′ over IK ′ ,

p5 = |P(A(C̃4, C̃4(x
∗)) = x∗)− P(A(C̃5, C̃5(x

∗)) = x∗)| ≤ negl
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Proof of (weak) one wayness
SIOWF + iO =⇒ iOWF

Finally,
p = P(A(C̃5, C̃5(x

∗) = x∗)
≤ P(A(C̃5, C̃5(x

∗)) = x∗ ∩ x∗ ∈ IK ′) + P(x∗ /∈ IK ′)
≤ P(A(gK ′(x∗)) = x∗ ∩ x∗ ∈ IK ′) + P(x∗ /∈ IK ′)
≤ negl + 1− 1

p(n)

So,

P(A(C̃ , C̃ (x∗)) ̸= x∗) ≥ 1− (p1 + p2 + p3 + p4 + p5 + p)
≥ 1

p(n) − negl

So, our construction is weakly one way.

We can boost it to standard OWF using known techniques.
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Results

1 OWF + iO =⇒ iOWF (what we just showed)

2 OWF + sub-exponential iO =⇒ TDP (what we will show
next)
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BRP paper

Constructed hard instance of SVL problem:

x1 → x2 → · · · → xT

Program F mapping xi to xi+1 with xi = (i ,PRFS(i))

In class, Mark showed that:
VBB obfuscation + iOWF =⇒ hard to find xT given x1 and
obfuscated instance of F
(proof harder if we use iO instead, usually introduce punctured
functions)

We can similarly show:
VBB obfuscation + iOWF =⇒ hard to find xi−1 given xi and
obfuscated instance of F
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Candidate permutation
IOWF + iO =⇒ TDP

Natural candidates for trapdoor permutation:

x1 → x2 → · · · → xT → x1

PK: obfuscated instance of F
SK: seed S of pseudorandom function

Problem: Not easy to sample random domain elements
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Plan
IOWF + iO =⇒ TDP

1 Use result 1 to get iOWF and apply BPR construction

2 Use BRP + add additional sampler to get TDP
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Definition
IOWF + iO =⇒ TDP

TDP = {fPK : DPK → DPK ,PK ∈ {0, 1}k(n), n ∈ N}
associated with efficient (probabilistic) key and domain
samplers (κ, ζ), is a (standard) TDP if it satisfies:

• Trapdoor invertibility: For any (PK ,SK ) in the support
of κ(1n), the function fPK is a permutation of a
corresponding domain DPK . The inverse f −1PK (y) can be
efficiently computed for any y ∈ DPK , using the trapdoor
SK .

• One wayness over the domain DPK
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Definition
IOWF + iO =⇒ TDP

• Domain sampling:

|P

D(x , r) = 1 :


r ← {0, 1}poly(n)

(PK ,SK )← κ(1n, r)

x ← ζ(PK )

−

P

D(x , r) = 1 :


r ← {0, 1}poly(n)

(PK ,SK )← κ(1n, r)

x ← DPK

 | ≤ negl
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Intuition for domain sampler
IOWF + iO =⇒ TDP

We would like to be able to sample (i ,PRFS(i)) uniformly:

• First attempt: have an additional obfuscated function that
on input i outputs PRFS(i)
Problem: then it’s easy to find any xi =⇒ easy to invert
(finding xi−1).

• Second attempt: the obfuscated function on input j
outputs i = PRG (j) and PRFS(i) where G is a length
doubling PRG (constructible from OWF)
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Domain sampling
IOWF + iO =⇒ TDP
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Construction of TDP
IOWF + iO =⇒ TDP

For S ← κPRF (1
n)

1 FS(i , σ) : takes as input i ∈ ZT and σ ∈ {0, 1}n and
checks whether σ = PRFS(i). If so it returns
(i + 1,PRFS(i + 1)) where i + 1 is computed modulo T.
Otherwise it returns ⊥

2 XS(j) : takes as input a seed j ∈ {0, 1}log(
√
T ) and outputs

(i , σ) = (PRG(j),PRFS(PRG(j))) where i is interpreted as
a residue in ZT .
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Construction of TDP
IOWF + iO =⇒ TDP

• PK ← F̃S = iO(FS) and X̃S = iO(XS)
Trapdoor is S

• DPK = (i ∈ ZT ,PRFS(i))

• TDPPK (i , σ) = F̃S(i , σ)

• TDP−1PK (i , σ) = (i − 1,PRFS(i − 1))

• ζ(PK ; j) = X̃S(j) (j is randomness ∈ {0, 1}log(
√
T ))
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Conclusion

2 results:

1 OWF + iO =⇒ iOWF

2 OWF + sub-exponential iO =⇒ TDP
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Commitment scheme

http://yuyu.hk/files/commitment.pdf contain the description
of the construction of (almost) perfect hiding from OWF
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n-wise independant hash family

https://en.wikipedia.org/wiki/K-
independent hashingPolynomials with random coefficients
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