Nir Bitansky, Omer Paneth, Daniel Wichs

Perfect structure on the edge of chaos

Nir Bitansky, Omer Paneth, Daniel Wichs

April, 2024

Perfect structure on the edge of chaos

Results

Nir Bitansky, Omer Paneth, Daniel Wichs

Results and Motivation

IOWF
Trapdoor
permutations

Conclusion
Appendix
(2) OWF + sub-exponential iO \Longrightarrow TDP

Results

Nir Bitansky, Omer Paneth, Daniel Wichs

Results and Motivation

IOWF
Trapdoor permutations

Conclusion Appendix
(1) $\mathrm{OWF}+\mathrm{iO} \Longrightarrow \mathrm{iOWF}$
(2) OWF + sub-exponential iO \Longrightarrow TDP

OWF $+\mathrm{iO} \Longrightarrow$ iOWF
OWF + sub-exponential iO \Longrightarrow TDP

- Minimizing assumptions Ex: from BPR+GPS paper presented by Mark and Ashvin, we know that iOWF + iO \Longrightarrow hardeness of SVL Using the first result: OWF $+\mathrm{iO} \Longrightarrow$ hardness of SVL
- Technique used to prove the second result relies on techniques developed in BRP to construct hard instance of SVL
- Perfect structure on the edge of chaos?
- Previous TDP candidates would all be broken if factoring
is broken/in SZK \Longrightarrow gives new direction to build TDP
- Previous TDP candidates would all be broken if factoring
is broken/in SZK \Longrightarrow gives new direction to build TDP (assuming we can build iO)

Why these results are interesting

First result

Nir Bitansky, Omer Paneth, Daniel Wichs

OWF + iO $\Longrightarrow \mathbf{i O W F}$

Two steps:
(1) OWF \Longrightarrow SIOWF
(2) SIOWF $+\mathrm{iO} \Longrightarrow \mathrm{iOWF}$

SIOWF

Nir Bitansky, Omer Paneth, Daniel Wichs

```
OWF \Longrightarrow SIOWF
```


Definition: Sometime injective OWF

SIOWF $=\left\{f_{K}:\{0,1\}^{n} \rightarrow\{0,1\}^{*}, K \in\{0,1\}^{k(n)}\right\}$
$\forall K, \exists I_{K}$ such that $\forall x \in I_{K}, f^{-1}(f(x))=\{x\}$

SIOWF

Nir Bitansky, Omer Paneth, Daniel Wichs

```
OWF \Longrightarrow SIOWF
```


Definition: Sometime injective OWF

SIOWF $=\left\{f_{K}:\{0,1\}^{n} \rightarrow\{0,1\}^{*}, K \in\{0,1\}^{k(n)}\right\}$
$\forall K, \exists I_{K}$ such that $\forall x \in I_{K}, f^{-1}(f(x))=\{x\}$
(1) Sometimes injectiveness:

$$
\mathbb{P}_{K, x}\left(x \in I_{K}\right) \geq \frac{1}{p(n)}
$$

SIOWF

Definition: Sometime injective OWF

$$
\text { SIOWF }=\left\{f_{K}:\{0,1\}^{n} \rightarrow\{0,1\}^{*}, K \in\{0,1\}^{k(n)}\right\}
$$

$\forall K, \exists I_{K}$ such that $\forall x \in I_{K}, f^{-1}(f(x))=\{x\}$
(1) Sometimes injectiveness:

$$
\mathbb{P}_{K, x}\left(x \in I_{K}\right) \geq \frac{1}{p(n)}
$$

2 One-wayness over injective subdomain

Perfect structure on the edge of chaos

Nir Bitansky, Omer Paneth, Daniel Wichs

Results and Motivation

IOWF
Trapdoor permutations

Conclusion
Appendix

Construction of SIOWF

```
OWF \Longrightarrow SIOWF
```


Construction of SIOWF

Nir Bitansky,

```
OWF \Longrightarrow SIOWF
```

Let $g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a OWF

- $K=(S, e)$ where $e \leftarrow[n]$ and S is a random seed for a hash function $h_{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{e+1}$ in a n-wise independant family of hash functions.
(can be instantiated using degree n polynomial over some large field, see appendix)

Construction of SIOWF

Nir Bitansky, Omer Paneth, Daniel Wichs

```
OWF \Longrightarrow SIOWF
```

Let $g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a OWF

- $K=(S, e)$ where $e \leftarrow[n]$ and S is a random seed for a hash function $h_{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{e+1}$ in a n-wise independant family of hash functions.
(can be instantiated using degree n polynomial over some large field, see appendix)
- $f_{K}(x)=\left(g(x), h_{S}(x)\right)$

Construction of IOWF

Nir Bitansky, Omer Paneth, Daniel Wichs

```
SIOWF + iO }\Longrightarrow\mathrm{ iOWF
```

Ingredients:

- iO (for P/poly)
- PRF a family of puncturable PRFs (known from OWF)
- $\left(\right.$ COM $_{1}$, COM $\left._{2}\right)$ a two message perfectly binding commitment scheme (known from OWF)

Puncturable PRF

Nir Bitansky, Omer Paneth, Daniel Wichs

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

$P R F=\left\{f_{S}:\{0,1\}^{p(n)} \rightarrow\{0,1\}^{n}, S \in\{0,1\}^{q(n)}\right\}$
With poly-time algo $\operatorname{Punc}(S, x)$ that outputs a punctured key S_{x} such that:

Puncturable PRF

Nir Bitansky, Omer Paneth, Daniel Wichs

```
SIOWF + iO C iOWF
```

$P R F=\left\{f_{S}:\{0,1\}^{p(n)} \rightarrow\{0,1\}^{n}, S \in\{0,1\}^{q(n)}\right\}$
With poly-time algo $\operatorname{Punc}(S, x)$ that outputs a punctured key S_{x} such that:
(1) Functionality is preserved under puncturing: $\forall x^{*}$:

$$
\mathbb{P}_{S \leftarrow \kappa\left(1^{n}\right)}\left(\forall x \neq x^{*}, f_{S}(x)=f_{S_{x^{*}}}(x)\right)=1
$$

Puncturable PRF

Nir Bitansky,

```
SIOWF + iO C iOWF
```

$P R F=\left\{f_{S}:\{0,1\}^{p(n)} \rightarrow\{0,1\}^{n}, S \in\{0,1\}^{q(n)}\right\}$
With poly-time algo $\operatorname{Punc}(S, x)$ that outputs a punctured key S_{x} such that:
(1) Functionality is preserved under puncturing: $\forall x^{*}$:

$$
\mathbb{P}_{S \leftarrow \kappa\left(1^{n}\right)}\left(\forall x \neq x^{*}, f_{S}(x)=f_{S_{x^{*}}}(x)\right)=1
$$

(2) Indistinguishability at punctured points:

$$
\begin{aligned}
& \left|\mathbb{P}\left(D\left(x^{*}, S_{x^{*}}, f_{S}\left(x^{*}\right)\right)=1\right)-\mathbb{P}\left(D\left(x^{*}, S_{x^{*}}, u\right)=1\right)\right| \leq \text { negl } \\
& \text { where } S \leftarrow \kappa\left(1^{n}\right) \text { and } u \leftarrow\{0,1\}^{n}
\end{aligned}
$$

Commitment scheme

Nir Bitansky, Omer Paneth, Daniel Wichs

Results and Motivation

IOWF
Trapdoor permutations

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

Method that allows a user to commit to a value while keeping it hidden, and while preserving the user's ability to reveal the committed value later (takes randomness as input).

Commitment scheme

Nir Bitansky, Omer Paneth, Daniel Wichs

```
SIOWF + iO \Longrightarrow iOWF
```

Method that allows a user to commit to a value while keeping it hidden, and while preserving the user's ability to reveal the committed value later (takes randomness as input).

2 properties:

(1) Hiding: It should be hard to distinguish between a commitment to x and to y :

$$
C_{r}(y) \simeq C_{r}(x)
$$

Commitment scheme

```
SIOWF + iO C iOWF
```

Method that allows a user to commit to a value while keeping it hidden, and while preserving the user's ability to reveal the committed value later (takes randomness as input).

2 properties:

(1) Hiding: It should be hard to distinguish between a commitment to x and to y :

$$
C_{r}(y) \simeq C_{r}(x)
$$

(2) Binding: There should be no way for a person who commits to one bit, to claim that he has committed to another value later:

Cannot find r_{0}, r_{1} such that $C_{r_{0}}(x)=C_{r_{1}}(y)$

Nir Bitansky, Omer Paneth, Daniel Wichs
(1) COM_{1} samples message $M_{1} \leftarrow \mathrm{COM}_{1}\left(1^{n}\right)$

2 message commitment scheme

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

(1) COM_{1} samples message $M_{1} \leftarrow \mathrm{COM}_{1}\left(1^{n}\right)$
(2) COM_{2} outputs a commitment M_{2} to plaintext $x \in\{0,1\}^{n}$ with respect to M_{1} and randomness r : $M_{2} \leftarrow \operatorname{COM}_{2}\left(x, M_{1}, r\right)$

2 message commitment scheme

```
SIOWF + iO \Longrightarrow iOWF
```

(1) COM_{1} samples message $M_{1} \leftarrow \mathrm{COM}_{1}\left(1^{n}\right)$
(2) COM_{2} outputs a commitment M_{2} to plaintext $x \in\{0,1\}^{n}$ with respect to M_{1} and randomness r :
$M_{2} \leftarrow \mathrm{COM}_{2}\left(x, M_{1}, r\right)$
The 2 message commitment scheme that we will be using is perfectly binding (used to prove injectiveness) and computationally hiding (used to prove one-wayness)

Existence of such a scheme from PRG
We use 2 messages for the perfectly binding condition (see appendix).

Construction of IOWF

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

Nir Bitansky, Omer Paneth, Daniel Wichs

Results and Motivation

IOWF
Trapdoor permutations

The function family:
For $M_{1} \leftarrow \operatorname{COM}_{1}\left(1^{n}\right), S \leftarrow \kappa\left(1^{n}\right)$, let $C_{M_{1}, S}:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$

$$
C_{M_{1}, S}(x)=\operatorname{COM}_{2}\left(x, M_{1}, f_{S}(x)\right)
$$

Construction of IOWF

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

Nir Bitansky, Omer Paneth, Daniel Wichs

The function family:

For $M_{1} \leftarrow \operatorname{COM}_{1}\left(1^{n}\right), S \leftarrow \kappa\left(1^{n}\right)$, let $C_{M_{1}, S}:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$

$$
C_{M_{1}, S}(x)=\operatorname{COM}_{2}\left(x, M_{1}, f_{S}(x)\right)
$$

- Key $K=\tilde{C} \leftarrow i O\left(C_{M_{1}, S}\right)$
- The function is given by $\operatorname{OWF}_{K}(x)=\tilde{C}(x)$

Nir Bitansky, Omer Paneth, Daniel Wichs

Proof intuition

$$
\mathrm{SIOWF}+\mathrm{iO} \Longrightarrow \mathrm{iOWF}
$$

Results and

 MotivationIOWF
Trapdoor

$$
C_{M_{1}, S}(x)=\operatorname{COM}_{2}\left(x, M_{1}, f_{S}(x)\right)
$$

Injectivity follows from the fact that the commitment scheme is perfectly binding.

Proof intuition

```
SIOWF + iO C iOWF
```

$$
C_{M_{1}, S}(x)=\operatorname{COM}_{2}\left(x, M_{1}, f_{S}(x)\right)
$$

Injectivity follows from the fact that the commitment scheme is perfectly binding.

If we had $V B B$ obfuscation instead of $i O \Longrightarrow$ same as interacting with black-box version of C with true randomness.

Nir Bitansky, Omer Paneth, Daniel Wichs

Proof of (weak) one wayness

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

First step: We define a new circuit:
Let $S_{x^{*}}=\operatorname{Punc}\left(S, x^{*}\right)$

$$
C_{1}(x)= \begin{cases}\operatorname{COM}_{2}\left(x, M_{1}, f_{S_{x^{*}}}(x)\right) & \text { if } x \neq x^{*} \\ \operatorname{COM}_{2}\left(x^{*}, M_{1}, f_{S}\left(x^{*}\right)\right) & \text { if } x=x^{*}\end{cases}
$$

By the iO guarantee:

$$
p_{1}=\left|\mathbb{P}\left(A\left(\tilde{C}, \tilde{C}\left(x^{*}\right)\right)=x^{*}\right)-\mathbb{P}\left(A\left(\tilde{C}_{1}, \tilde{C}_{1}\left(x^{*}\right)\right)=x^{*}\right)\right| \leq \text { neg| }
$$

Nir Bitansky, Omer Paneth, Daniel Wichs

Proof of (weak) one wayness

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

Results and

 MotivationIOWF
Second step: We define a new circuit:

$$
C_{2}(x)= \begin{cases}\operatorname{com}_{2}\left(x, M_{1}, f_{S_{x^{*}}}(x)\right) & \text { if } x \neq x^{*} \\ \operatorname{COM}_{2}\left(x^{*}, M_{1}, r\right) & \text { if } x=x^{*}\end{cases}
$$

with $r \leftarrow\{0,1\}^{n}$

Proof of (weak) one wayness

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

Second step: We define a new circuit:

$$
C_{2}(x)= \begin{cases}\operatorname{com}_{2}\left(x, M_{1}, f_{S_{x^{*}}}(x)\right) & \text { if } x \neq x^{*} \\ \operatorname{com}_{2}\left(x^{*}, M_{1}, r\right) & \text { if } x=x^{*}\end{cases}
$$

with $r \leftarrow\{0,1\}^{n}$
By pseudorandomness at punctured points:

$$
p_{2}=\left|\mathbb{P}\left(A\left(\tilde{C}_{1}, \tilde{C}_{1}\left(x^{*}\right)\right)=x^{*}\right)-\mathbb{P}\left(A\left(\tilde{C}_{2}, \tilde{C}_{2}\left(x^{*}\right)\right)=x^{*}\right)\right| \leq \text { neg } \mid
$$

Nir Bitansky, Omer Paneth, Daniel Wichs

Proof of (weak) one wayness

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

Third step: We define a new circuit:

$$
C_{3}(x)= \begin{cases}\operatorname{COM}_{2}\left(x, M_{1}, f_{S_{x^{*}}}(x)\right) & \text { if } x \neq x^{*} \\ \operatorname{COM}_{2}\left(0^{n}, M_{1}, r\right) & \text { if } x=x^{*}\end{cases}
$$

with $r \leftarrow\{0,1\}^{n}$

Proof of (weak) one wayness

```
SIOWF + iO C iOWF
```

Third step: We define a new circuit:

$$
C_{3}(x)= \begin{cases}\operatorname{com}_{2}\left(x, M_{1}, f_{S_{x^{*}}}(x)\right) & \text { if } x \neq x^{*} \\ \operatorname{COM}_{2}\left(0^{n}, M_{1}, r\right) & \text { if } x=x^{*}\end{cases}
$$

with $r \leftarrow\{0,1\}^{n}$
By the computational hiding of the commitment:

$$
p_{3}=\left|\mathbb{P}\left(A\left(\tilde{C}_{2}, \tilde{C}_{2}\left(x^{*}\right)\right)=x^{*}\right)-\mathbb{P}\left(A\left(\tilde{C}_{3}, \tilde{C}_{3}\left(x^{*}\right)\right)=x^{*}\right)\right| \leq \operatorname{neg} \mid
$$

Proof of (weak) one wayness

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

Fourth step: We define a new circuit:

$$
C_{4}(x)= \begin{cases}\operatorname{COM}_{2}\left(x, M_{1}, f_{S}(x)\right) & \text { if } x \neq x^{*} \\ \operatorname{COM}_{2}\left(0^{n}, M_{1}, r\right) & \text { if } x=x^{*}\end{cases}
$$

with $r \leftarrow\{0,1\}^{n}$

Proof of (weak) one wayness

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

Fourth step: We define a new circuit:

$$
C_{4}(x)= \begin{cases}\operatorname{COM}_{2}\left(x, M_{1}, f_{S}(x)\right) & \text { if } x \neq x^{*} \\ \operatorname{COM}_{2}\left(0^{n}, M_{1}, r\right) & \text { if } x=x^{*}\end{cases}
$$

with $r \leftarrow\{0,1\}^{n}$
By the iO guarantee:

$$
p_{4}=\left|\mathbb{P}\left(A\left(\tilde{C}_{3}, \tilde{C}_{3}\left(x^{*}\right)\right)=x^{*}\right)-\mathbb{P}\left(A\left(\tilde{C}_{4}, \tilde{C}_{4}\left(x^{*}\right)\right)=x^{*}\right)\right| \leq \operatorname{neg} \mid
$$

Proof of (weak) one wayness

```
SIOWF + iO \Longrightarrow iOWF
```

Fifth step: We define a new circuit:
Let SIOWF be a family of sometime injective one way functions with efficient key sampler κ^{\prime}.
Let $K^{\prime} \leftarrow \kappa^{\prime}\left(1^{n}\right)$ and $g_{K^{\prime}}$ the associated SIOWF.
If $x^{*} \in I_{K^{\prime}}$:

$$
C_{5}(x)= \begin{cases}\operatorname{COM}_{2}\left(x, M_{1}, f_{S}(x)\right) & \text { if } g_{K^{\prime}}(x) \neq g_{K^{\prime}}\left(x^{*}\right) \\ \operatorname{COM}_{2}\left(0^{n}, M_{1}, r\right) & \text { if } g_{K^{\prime}}(x)=g_{K^{\prime}}\left(x^{*}\right)\end{cases}
$$

with $r \leftarrow\{0,1\}^{n}$
Else: $C_{5}=C_{4}$

Proof of (weak) one wayness

```
SIOWF + iO \Longrightarrow iOWF
```

Fifth step: We define a new circuit:
Let SIOWF be a family of sometime injective one way functions with efficient key sampler κ^{\prime}.
Let $K^{\prime} \leftarrow \kappa^{\prime}\left(1^{n}\right)$ and $g_{K^{\prime}}$ the associated SIOWF.
If $x^{*} \in I_{K^{\prime}}$:

$$
C_{5}(x)= \begin{cases}\operatorname{COM}_{2}\left(x, M_{1}, f_{S}(x)\right) & \text { if } g_{K^{\prime}}(x) \neq g_{K^{\prime}}\left(x^{*}\right) \\ \operatorname{COM}_{2}\left(0^{n}, M_{1}, r\right) & \text { if } g_{K^{\prime}}(x)=g_{K^{\prime}}\left(x^{*}\right)\end{cases}
$$

with $r \leftarrow\{0,1\}^{n}$
Else: $C_{5}=C_{4}$
By injectiveness of $g_{K^{\prime}}$ over $I_{K^{\prime}}$,

$$
p_{5}=\left|\mathbb{P}\left(A\left(\tilde{C}_{4}, \tilde{C}_{4}\left(x^{*}\right)\right)=x^{*}\right)-\mathbb{P}\left(A\left(\tilde{C}_{5}, \tilde{C}_{5}\left(x^{*}\right)\right)=x^{*}\right)\right| \leq \text { negl }
$$

Proof of (weak) one wayness

Nir Bitansky, Omer Paneth, Daniel Wichs

$$
\text { SIOWF }+\mathrm{iO} \Longrightarrow \text { iOWF }
$$

Finally,
$p=\mathbb{P}\left(A\left(\tilde{C}_{5}, \tilde{C}_{5}\left(x^{*}\right)=x^{*}\right)\right.$
$\leq \mathbb{P}\left(A\left(\tilde{C}_{5}, \tilde{C}_{5}\left(x^{*}\right)\right)=x^{*} \cap x^{*} \in I_{K^{\prime}}\right)+\mathbb{P}\left(x^{*} \notin I_{K^{\prime}}\right)$
$\leq \mathbb{P}\left(A\left(g_{K^{\prime}}\left(x^{*}\right)\right)=x^{*} \cap x^{*} \in I_{K^{\prime}}\right)+\mathbb{P}\left(x^{*} \notin I_{K^{\prime}}\right)$
$\leq n e g l+1-\frac{1}{p(n)}$

Proof of (weak) one wayness

Nir Bitansky, Omer Paneth, Daniel Wichs

Finally,

$$
\begin{aligned}
& p=\mathbb{P}\left(A\left(\tilde{C}_{5}, \tilde{C}_{5}\left(x^{*}\right)=x^{*}\right)\right. \\
& \leq \mathbb{P}\left(A\left(\tilde{C}_{5}, \tilde{C}_{5}\left(x^{*}\right)\right)=x^{*} \cap x^{*} \in I_{K^{\prime}}\right)+\mathbb{P}\left(x^{*} \notin I_{K^{\prime}}\right) \\
& \leq \mathbb{P}\left(A\left(g_{K^{\prime}}\left(x^{*}\right)\right)=x^{*} \cap x^{*} \in I_{K^{\prime}}\right)+\mathbb{P}\left(x^{*} \notin I_{K^{\prime}}\right) \\
& \leq \operatorname{negl}+1-\frac{1}{p(n)} \text { So, } \\
& \mathbb{P}\left(A\left(\tilde{C}, \tilde{C}\left(x^{*}\right)\right) \neq x^{*}\right) \geq 1-\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}+p\right) \\
& \quad \geq \frac{1}{p(n)}-\text { negl }
\end{aligned}
$$

So, our construction is weakly one way.

Proof of (weak) one wayness

```
SIOWF + iO C iOWF
```

Finally,

$$
\begin{aligned}
& p=\mathbb{P}\left(A\left(\tilde{C}_{5}, \tilde{C}_{5}\left(x^{*}\right)=x^{*}\right)\right. \\
& \leq \mathbb{P}\left(A\left(\tilde{C}_{5}, \tilde{C}_{5}\left(x^{*}\right)\right)=x^{*} \cap x^{*} \in I_{K^{\prime}}\right)+\mathbb{P}\left(x^{*} \notin I_{K^{\prime}}\right) \\
& \leq \mathbb{P}\left(A\left(g_{K^{\prime}}\left(x^{*}\right)\right)=x^{*} \cap x^{*} \in I_{K^{\prime}}\right)+\mathbb{P}\left(x^{*} \notin I_{K^{\prime}}\right) \\
& \leq \operatorname{negl}+1-\frac{1}{p(n)} \text { So, } \\
& \mathbb{P}\left(A\left(\tilde{C}, \tilde{C}\left(x^{*}\right)\right) \neq x^{*}\right) \geq 1-\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}+p\right) \\
& \quad \geq \frac{1}{p(n)}-\text { negl }
\end{aligned}
$$

So, our construction is weakly one way.
We can boost it to standard OWF using known techniques.
(1) $\mathrm{OWF}+\mathrm{iO} \Longrightarrow$ iOWF (what we just showed)
(2) OWF + sub-exponential $\mathrm{iO} \Longrightarrow$ TDP (what we will show next)

Results

BRP paper

Nir Bitansky, Omer Paneth, Daniel Wichs

Constructed hard instance of SVL problem:

$$
x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{T}
$$

Program F mapping x_{i} to x_{i+1} with $x_{i}=\left(i, \operatorname{PRF}_{S}(i)\right)$

BRP paper

Constructed hard instance of SVL problem:

$$
x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{T}
$$

Program F mapping x_{i} to x_{i+1} with $x_{i}=\left(i, \operatorname{PRF}_{S}(i)\right)$
In class, Mark showed that:
VBB obfuscation + iOWF \Longrightarrow hard to find x_{T} given x_{1} and obfuscated instance of F (proof harder if we use iO instead, usually introduce punctured functions)

BRP paper

Constructed hard instance of SVL problem:

$$
x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{T}
$$

Program F mapping x_{i} to x_{i+1} with $x_{i}=\left(i, \operatorname{PRF}_{S}(i)\right)$
In class, Mark showed that:
VBB obfuscation + iOWF \Longrightarrow hard to find x_{T} given x_{1} and obfuscated instance of F (proof harder if we use iO instead, usually introduce punctured functions)

We can similarly show:
VBB obfuscation $+\mathrm{iOWF} \Longrightarrow$ hard to find x_{i-1} given x_{i} and obfuscated instance of F

Candidate permutation

$$
\text { IOWF }+\mathrm{iO} \Longrightarrow \text { TDP }
$$

Natural candidates for trapdoor permutation:

$$
x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{T} \rightarrow x_{1}
$$

PK: obfuscated instance of F
SK: seed S of pseudorandom function

Candidate permutation

$$
\text { IOWF }+\mathrm{iO} \Longrightarrow \text { TDP }
$$

Natural candidates for trapdoor permutation:

$$
x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{T} \rightarrow x_{1}
$$

PK: obfuscated instance of F
SK: seed S of pseudorandom function
Problem: Not easy to sample random domain elements
(1) Use result 1 to get iOWF and apply BPR construction (2) Use BRP + add additional sampler to get TDP

Definition

Nir Bitansky, Omer Paneth, Daniel Wichs

Results and Motivation IOWF

Trapdoor permutations
$T D P=\left\{f_{P K}: D_{P K} \rightarrow D_{P K}, P K \in\{0,1\}^{k(n)}, n \in \mathbb{N}\right\}$ associated with efficient (probabilistic) key and domain samplers (κ, ζ), is a (standard) TDP if it satisfies:

Definition

$T D P=\left\{f_{P K}: D_{P K} \rightarrow D_{P K}, P K \in\{0,1\}^{k(n)}, n \in \mathbb{N}\right\}$ associated with efficient (probabilistic) key and domain samplers (κ, ζ), is a (standard) TDP if it satisfies:

- Trapdoor invertibility: For any $(P K, S K)$ in the support of $\kappa\left(1^{n}\right)$, the function $f_{P K}$ is a permutation of a corresponding domain $D_{P K}$. The inverse $f_{P K}^{-1}(y)$ can be efficiently computed for any $y \in D_{P K}$, using the trapdoor SK.

Definition

$T D P=\left\{f_{P K}: D_{P K} \rightarrow D_{P K}, P K \in\{0,1\}^{k(n)}, n \in \mathbb{N}\right\}$ associated with efficient (probabilistic) key and domain samplers (κ, ζ), is a (standard) TDP if it satisfies:

- Trapdoor invertibility: For any $(P K, S K)$ in the support of $\kappa\left(1^{n}\right)$, the function $f_{P K}$ is a permutation of a corresponding domain $D_{P K}$. The inverse $f_{P K}^{-1}(y)$ can be efficiently computed for any $y \in D_{P K}$, using the trapdoor SK.
- One wayness over the domain $D_{P K}$

Definition

Nir Bitansky, Omer Paneth, Daniel Wichs

$$
\text { IOWF }+\mathrm{iO} \Longrightarrow \text { TDP }
$$

- Domain sampling:

$$
\begin{gathered}
\left\lvert\, \mathbb{P}\left(D(x, r)=1:\left\{\begin{array}{l}
r \leftarrow\{0,1\}^{\text {poly }(n)} \\
(P K, S K) \leftarrow \kappa\left(1^{n}, r\right) \\
x \leftarrow \zeta(P K)
\end{array}\right)-\right.\right. \\
\mathbb{P}\left(D(x, r)=1: \left.\left\{\begin{array}{l}
r \leftarrow\{0,1\}^{\text {poly }(n)} \\
(P K, S K) \leftarrow \kappa\left(1^{n}, r\right) \\
x \leftarrow D_{P K}
\end{array}\right) \right\rvert\, \leq \mathrm{negl}\right.
\end{gathered}
$$

Nir Bitansky, Omer Paneth, Daniel Wichs

Intuition for domain sampler

$$
\text { IOWF }+\mathrm{iO} \Longrightarrow \text { TDP }
$$

We would like to be able to sample ($\left.i, P R F_{S}(i)\right)$ uniformly:

- First attempt: have an additional obfuscated function that on input i outputs $P R F_{S}(i)$
Problem: then it's easy to find any $x_{i} \Longrightarrow$ easy to invert (finding x_{i-1}).

Intuition for domain sampler

```
IOWF + iO \Longrightarrow TDP
```

We would like to be able to sample ($\left.i, P R F_{S}(i)\right)$ uniformly:

- First attempt: have an additional obfuscated function that on input i outputs $P R F_{S}(i)$
Problem: then it's easy to find any $x_{i} \Longrightarrow$ easy to invert (finding x_{i-1}).
- Second attempt: the obfuscated function on input j outputs $i=P R G(j)$ and $P R F_{S}(i)$ where G is a length doubling PRG (constructible from OWF)

Perfect structure on the edge of chaos

Ni Bitansky,

Domain sampling

$$
\text { IOWF }+\mathrm{iO} \Longrightarrow \text { TDP }
$$

$$
F_{s}\left(\left(i, \operatorname{PRF}_{s}(i)\right)\right)=\left(i+1, \operatorname{PRF}_{\text {easy }}(i+1)\right)
$$

Given $(i+1, \operatorname{PRF}(i+1))$, Find $(i, \operatorname{PRF}(i))$
Need \dot{j} such that $\operatorname{PRG}(\dot{j})=i$
\Rightarrow hard to find because PRG is a ow F

Construction of TDP

Nir Bitansky, Omer Paneth, Daniel Wichs

```
IOWF + iO \LongrightarrowTDP
```

For $S \leftarrow \kappa_{P R F}\left(1^{n}\right)$
(1) $F_{S}(i, \sigma)$: takes as input $i \in \mathbb{Z}_{T}$ and $\sigma \in\{0,1\}^{n}$ and checks whether $\sigma=\operatorname{PRF}_{S}(i)$. If so it returns $(i+1, \operatorname{PRFS}(i+1))$ where $\mathrm{i}+1$ is computed modulo T . Otherwise it returns \perp
(2) $X_{S}(j)$: takes as input a seed $j \in\{0,1\}^{\log (\sqrt{T})}$ and outputs $(i, \sigma)=\left(\operatorname{PRG}(j), \operatorname{PRF}_{s}(\operatorname{PRG}(j))\right)$ where i is interpreted as a residue in \mathbb{Z}_{T}.

Construction of TDP

Nir Bitansky, Omer Paneth, Daniel Wichs

- $\mathrm{PK} \leftarrow \tilde{F}_{S}=i O\left(F_{S}\right)$ and $\tilde{X}_{S}=i O\left(X_{S}\right)$ Trapdoor is S
- $D_{P K}=\left(i \in \mathbb{Z}_{T}, \operatorname{PRF}_{S}(i)\right)$
- $\operatorname{TDP}_{P K}(i, \sigma)=\tilde{F}_{S}(i, \sigma)$
- $\operatorname{TDP}_{P K}^{-1}(i, \sigma)=\left(i-1, \operatorname{PRF}_{S}(i-1)\right)$
- $\zeta(P K ; j)=\tilde{X}_{S}(j)\left(j\right.$ is randomness $\left.\in\{0,1\}^{\log (\sqrt{T})}\right)$

Conclusion

Nir Bitansky, Omer Paneth, Daniel Wichs

2 results:
(1) $\mathrm{OWF}+\mathrm{iO} \Longrightarrow \mathrm{iOWF}$
(2) OWF + sub-exponential iO \Longrightarrow TDP

Commitment scheme

Nir Bitansky, Omer Paneth, Daniel Wichs

Results and Motivation

IOWF
Trapdoor

Conclusion
Appendix

n-wise independant hash family

https://en.wikipedia.org/wiki/Kindependent_hashingPolynomials_with_random_coefficients

