
On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

1/19

On the Cryptographic Hardness of Local
Search

Authors: Nir Bitansky, Idan Gerichter

Presenters: Shouqiao Wang1, Yuriko Nishijima2

April, 2024

1Columbia University, New York. shwang27@gsb.columbia.edu
2Columbia University, New York. yn2411@columbia.edu



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

2/19

Recap: PLS

Definition (SINK-OF-DAG)

Given V = {0, 1}n, S : V → V , cost C : V → {0, 1}m. The
edge e = (u, v) exists ⇐⇒ S(u) = v , C (v) > C (u).
Problem: Given a source s ′:

S(s ′) ̸= s ′ and C (S(s ′)) > C (s ′),

find a sink u with no out-edge, i.e.,

S(u) = u or S(u) = v but C (v) ≤ C (u).

SINK-OF-DAG is PLS complete!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

3/19

Recap: PLS

Each node can have multiple in-nodes, but only one out-node.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

4/19

Recap: SVL

Definition (SVL: SINK-OF-VERIFIABLE-LINE)

Given a DAG on U = {0, 1}n implicitly defined by S : U → U,
we also consider the promise V : U × [T ] → {0, 1} given as

V (w , i) = 1 ⇐⇒ w = S i−1(xs).

Problem: Given a xs , find a w s.t. V (w ,T ) = 1.

From previous lecture, we have

• iO + OWFs ⇒ SVL is hard

• SVL is hard ⇒ PLS ∩ PPAD is hard



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

5/19

Recap: SVL

Why iO + OWFs ⇒ SVL hardness?

Main proof idea is:
A polynomial-space machine M solving hard search problem R
on input x , with an incrementally-verifiable computation, given
the proof is generated uniquely

(M0
x , π0)

S−→ · · · S−→ (MT
x , πT ).

SVL is not a total problem (it’s a promise problem)
We can construct it in a way that it always has a solution

• PSPACE machine

• IVC (Incrementally-verifiable computation) + Uniqueness

⇒ Three properties:
verifiable, incrementally generateable proofs, unique



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

5/19

Recap: SVL

Why iO + OWFs ⇒ SVL hardness?

Main proof idea is:
A polynomial-space machine M solving hard search problem R
on input x , with an incrementally-verifiable computation, given
the proof is generated uniquely

(M0
x , π0)

S−→ · · · S−→ (MT
x , πT ).

SVL is not a total problem (it’s a promise problem)
We can construct it in a way that it always has a solution

• PSPACE machine

• IVC (Incrementally-verifiable computation) + Uniqueness

⇒ Three properties:
verifiable, incrementally generateable proofs, unique



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

5/19

Recap: SVL

Why iO + OWFs ⇒ SVL hardness?

Main proof idea is:
A polynomial-space machine M solving hard search problem R
on input x , with an incrementally-verifiable computation, given
the proof is generated uniquely

(M0
x , π0)

S−→ · · · S−→ (MT
x , πT ).

SVL is not a total problem (it’s a promise problem)
We can construct it in a way that it always has a solution

• PSPACE machine

• IVC (Incrementally-verifiable computation) + Uniqueness

⇒ Three properties:
verifiable, incrementally generateable proofs, unique



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

6/19

Main Question

Question:
What can we get if we relax the uniqueness property?

Verifiable + incrementally generateable proofs + unique
⇒ SVL hardness ⇒ PLS ∩ PPAD hardness.

Verifiable + incrementally generateable proofs +
computational unique (hard to find more than one proof)
⇒ rSVL hardness ⇒ PLS ∩ PPAD hardness.

Verifiable + incrementally generateable proofs
⇒ We cannot construct SVL instances, but PLS hardness!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

6/19

Main Question

Question:
What can we get if we relax the uniqueness property?

Verifiable + incrementally generateable proofs + unique
⇒ SVL hardness ⇒ PLS ∩ PPAD hardness.

Verifiable + incrementally generateable proofs +
computational unique (hard to find more than one proof)
⇒ rSVL hardness ⇒ PLS ∩ PPAD hardness.

Verifiable + incrementally generateable proofs
⇒ We cannot construct SVL instances, but PLS hardness!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

6/19

Main Question

Question:
What can we get if we relax the uniqueness property?

Verifiable + incrementally generateable proofs + unique
⇒ SVL hardness ⇒ PLS ∩ PPAD hardness.

Verifiable + incrementally generateable proofs +
computational unique (hard to find more than one proof)
⇒ rSVL hardness ⇒ PLS ∩ PPAD hardness.

Verifiable + incrementally generateable proofs
⇒ We cannot construct SVL instances, but PLS hardness!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

7/19

Main Result

IVC with incremental completeness ⇒ PLS hardness.

Definition (IVC with incremental completeness)

IVC=(IVC.G, IVC.P, IVC.V) for Turing machine M:

• IVC.G(x): Outputs public parameters pp (randomized)

• IVC.P(pp, t,C , π): Outputs a proof π′ (deterministic)

• IVC.V(pp, t,C , π): Outputs ACC or REJ (deterministic)

with properties:

• Incremental completeness: Given π′ =IVC.P(pp, t,C , π),
IVC.V(pp, t,Mt

x , π) = ACC
⇒ IVC.V(pp, t + 1,Mt+1

x , π′) = ACC

• Soundness

• Efficiency



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

8/19

Intuitively, why IVC+IC ⇒ PLS?

In PLS,

• one node can have multiple in-nodes

• but only one out-node

• all nodes must be ordered in some increasing way

In IVC with incremental completeness,

• multiple accepting proofs ⇒ multiple in-nodes

• given ∀(Mt , πt), the incremental-proof procedure gives
only one specific π′ for Mt+1



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

9/19

IVC Reduction Theorem

Theorem
Let R ∈ FNP, solvable by a polynomial-space Turing machine
M. If there exists an IVC scheme with incremental
completeness for M, there exists a computationally sound Karp
reduction (χ,W ) from R to LS (or SINK-OF-DAG).



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

10/19

Construct IVC with IC

Question:
Without uniqueness requirement for proofs, can we construct
IVC with incremental completeness from better (less)
assumptions than what we used previously for rSVL hardness
(like SNARGs and so on)?

Answer:
Yes!

We only need the assumption of ROM (Random Oracle Model)

PSPACE-language-with-incrementable-non-unique-proofs exists
in the ROM!

We can construct it using some techniques in blockchain, CP
Graphs3 and Proofs of Sequential Work (PoSW).

3CP stands for Cohen and Pietrzak, who introduced CP Graphs



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

10/19

Construct IVC with IC

Question:
Without uniqueness requirement for proofs, can we construct
IVC with incremental completeness from better (less)
assumptions than what we used previously for rSVL hardness
(like SNARGs and so on)?

Answer:
Yes!

We only need the assumption of ROM (Random Oracle Model)

PSPACE-language-with-incrementable-non-unique-proofs exists
in the ROM!

We can construct it using some techniques in blockchain, CP
Graphs3 and Proofs of Sequential Work (PoSW).

3CP stands for Cohen and Pietrzak, who introduced CP Graphs



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

11/19

PoSW

Definition (PoSW)

In a PoSW, the prover is given a statement χ and a time
parameter T , and can generate a corresponding proof π by
making T sequential steps.
The soundness requirement is that provers that make ≪ T
sequential steps, will fail to generate a valid proof for χ.

Question: How to construct a PoSW?

Answer: Use CP Graphs!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

11/19

PoSW

Definition (PoSW)

In a PoSW, the prover is given a statement χ and a time
parameter T , and can generate a corresponding proof π by
making T sequential steps.
The soundness requirement is that provers that make ≪ T
sequential steps, will fail to generate a valid proof for χ.

Question: How to construct a PoSW?

Answer: Use CP Graphs!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

11/19

PoSW

Definition (PoSW)

In a PoSW, the prover is given a statement χ and a time
parameter T , and can generate a corresponding proof π by
making T sequential steps.
The soundness requirement is that provers that make ≪ T
sequential steps, will fail to generate a valid proof for χ.

Question: How to construct a PoSW?

Answer: Use CP Graphs!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

12/19

CP Graphs

Definition (CP Graphs)

CP Graphs is a complete binary tree with edges pointing from
the leaves to the root with some added edges (red lines).

The added edges are the edge pointing from one node to all
the leaves under its right sibling node.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

13/19

Graph Labeling in CP Graphs

Labeling Principle:
In order to compute the label of one node, we must first
compute the labels of its all in-nodes. Specifically, the label of
any given node is obtained by applying a random oracle
Hχ = H(χ, ·) to the labels of its incoming nodes.

To compute the root, labeling must be done sequentially!

CP Labeling Procedure:



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

13/19

Graph Labeling in CP Graphs

Labeling Principle:
In order to compute the label of one node, we must first
compute the labels of its all in-nodes. Specifically, the label of
any given node is obtained by applying a random oracle
Hχ = H(χ, ·) to the labels of its incoming nodes.

To compute the root, labeling must be done sequentially!

CP Labeling Procedure:



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

13/19

Graph Labeling in CP Graphs

Labeling Principle:
In order to compute the label of one node, we must first
compute the labels of its all in-nodes. Specifically, the label of
any given node is obtained by applying a random oracle
Hχ = H(χ, ·) to the labels of its incoming nodes.

To compute the root, labeling must be done sequentially!

CP Labeling Procedure:



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

14/19

Properties of CP Labeling
CP Labeling Procedure:

Suppose v1, v2, · · · vT is the sequence in which labels are being
outputted, Ut is the set of nodes we need to store at round t.

Properties:
• Computing root needs exponentially many steps, but only
polynomial space.

• Given t, computing Ut vt can be done in poly(d) time.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

15/19

How to Construct Proofs?

How to turn this into an actual proof of sequential work π?

A high-level design

1 Prover publishes the label of the root of the entire tree

2 Verifier responds with random challenge leaves

3 Prover answers by providing all the labels in the
corresponding paths toward the root (Merkle proof)

4 Make it non-interactive by Fiat-Shamir

Then, what do we have for now?

We can get an incrementally generateable nodes (think of Mt
x),

by keeping track of Ut .

However, we still need to construct incrementally generateable
proofs to guarantee the verifiability of the intermediate states!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

15/19

How to Construct Proofs?

How to turn this into an actual proof of sequential work π?

A high-level design

1 Prover publishes the label of the root of the entire tree

2 Verifier responds with random challenge leaves

3 Prover answers by providing all the labels in the
corresponding paths toward the root (Merkle proof)

4 Make it non-interactive by Fiat-Shamir

Then, what do we have for now?

We can get an incrementally generateable nodes (think of Mt
x),

by keeping track of Ut .

However, we still need to construct incrementally generateable
proofs to guarantee the verifiability of the intermediate states!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

15/19

How to Construct Proofs?

How to turn this into an actual proof of sequential work π?

A high-level design

1 Prover publishes the label of the root of the entire tree

2 Verifier responds with random challenge leaves

3 Prover answers by providing all the labels in the
corresponding paths toward the root (Merkle proof)

4 Make it non-interactive by Fiat-Shamir

Then, what do we have for now?

We can get an incrementally generateable nodes (think of Mt
x),

by keeping track of Ut .

However, we still need to construct incrementally generateable
proofs to guarantee the verifiability of the intermediate states!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

15/19

How to Construct Proofs?

How to turn this into an actual proof of sequential work π?

A high-level design

1 Prover publishes the label of the root of the entire tree

2 Verifier responds with random challenge leaves

3 Prover answers by providing all the labels in the
corresponding paths toward the root (Merkle proof)

4 Make it non-interactive by Fiat-Shamir

Then, what do we have for now?

We can get an incrementally generateable nodes (think of Mt
x),

by keeping track of Ut .

However, we still need to construct incrementally generateable
proofs to guarantee the verifiability of the intermediate states!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

15/19

How to Construct Proofs?

How to turn this into an actual proof of sequential work π?

A high-level design

1 Prover publishes the label of the root of the entire tree

2 Verifier responds with random challenge leaves

3 Prover answers by providing all the labels in the
corresponding paths toward the root (Merkle proof)

4 Make it non-interactive by Fiat-Shamir

Then, what do we have for now?

We can get an incrementally generateable nodes (think of Mt
x),

by keeping track of Ut .

However, we still need to construct incrementally generateable
proofs to guarantee the verifiability of the intermediate states!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

16/19

Naive Idea

Question: Given a sequence of set {Ut}, how to contruct πt?
A high-level design

1 Prover publishes the label of the root of the entire tree

2 Verifier responds with random challenge leaves

3 Prover answers by providing all the labels in the
corresponding paths toward the root (Merkle proof)

4 Make it non-interactive by Fiat-Shamir

Naive idea:

• Use Fiat-Shamir to get random challenges in step 2

• πt = {πi
t |for ∀ui ∈ Ut , π

i
t is the proof for ui}

Not enough for IVC, since the intermediate proofs themselves
cannot be computed incrementally, i.e., we cannot get πt+1

from (Ut , πt), because we randomly select challenge leaves!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

16/19

Naive Idea

Question: Given a sequence of set {Ut}, how to contruct πt?
A high-level design

1 Prover publishes the label of the root of the entire tree

2 Verifier responds with random challenge leaves

3 Prover answers by providing all the labels in the
corresponding paths toward the root (Merkle proof)

4 Make it non-interactive by Fiat-Shamir

Naive idea:

• Use Fiat-Shamir to get random challenges in step 2

• πt = {πi
t |for ∀ui ∈ Ut , π

i
t is the proof for ui}

Not enough for IVC, since the intermediate proofs themselves
cannot be computed incrementally, i.e., we cannot get πt+1

from (Ut , πt), because we randomly select challenge leaves!



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

17/19

DLM4 Construction
Rather than sampling fresh challenges for each round, we
sample them randomly from previously computed challenges!

4DLM stands for Döttling, Lai, and Malavolta, who introduced DLM



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

17/19

DLM4 Construction
Rather than sampling fresh challenges for each round, we
sample them randomly from previously computed challenges!

4DLM stands for Döttling, Lai, and Malavolta, who introduced DLM



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

18/19

ROM and IVC for DLM

Wait, where do we use ROM?

We use random oracle machine Hχ in step 2 to label L[vt ] and
H ′
χ to sample random challenges.

Hχ and H ′
χ could be different random oracle machines.

Why non-uniqueness?

This is because the proofs for every randomly selected
challenges are acceptable, even in the case of the naive idea
rather than DLM.

Why IVC with incremental completeness?

The paper proves the IVC with incremental completeness,
soundness and efficiency.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

18/19

ROM and IVC for DLM

Wait, where do we use ROM?

We use random oracle machine Hχ in step 2 to label L[vt ] and
H ′
χ to sample random challenges.

Hχ and H ′
χ could be different random oracle machines.

Why non-uniqueness?

This is because the proofs for every randomly selected
challenges are acceptable, even in the case of the naive idea
rather than DLM.

Why IVC with incremental completeness?

The paper proves the IVC with incremental completeness,
soundness and efficiency.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

18/19

ROM and IVC for DLM

Wait, where do we use ROM?

We use random oracle machine Hχ in step 2 to label L[vt ] and
H ′
χ to sample random challenges.

Hχ and H ′
χ could be different random oracle machines.

Why non-uniqueness?

This is because the proofs for every randomly selected
challenges are acceptable, even in the case of the naive idea
rather than DLM.

Why IVC with incremental completeness?

The paper proves the IVC with incremental completeness,
soundness and efficiency.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

18/19

ROM and IVC for DLM

Wait, where do we use ROM?

We use random oracle machine Hχ in step 2 to label L[vt ] and
H ′
χ to sample random challenges.

Hχ and H ′
χ could be different random oracle machines.

Why non-uniqueness?

This is because the proofs for every randomly selected
challenges are acceptable, even in the case of the naive idea
rather than DLM.

Why IVC with incremental completeness?

The paper proves the IVC with incremental completeness,
soundness and efficiency.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

18/19

ROM and IVC for DLM

Wait, where do we use ROM?

We use random oracle machine Hχ in step 2 to label L[vt ] and
H ′
χ to sample random challenges.

Hχ and H ′
χ could be different random oracle machines.

Why non-uniqueness?

This is because the proofs for every randomly selected
challenges are acceptable, even in the case of the naive idea
rather than DLM.

Why IVC with incremental completeness?

The paper proves the IVC with incremental completeness,
soundness and efficiency.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

18/19

ROM and IVC for DLM

Wait, where do we use ROM?

We use random oracle machine Hχ in step 2 to label L[vt ] and
H ′
χ to sample random challenges.

Hχ and H ′
χ could be different random oracle machines.

Why non-uniqueness?

This is because the proofs for every randomly selected
challenges are acceptable, even in the case of the naive idea
rather than DLM.

Why IVC with incremental completeness?

The paper proves the IVC with incremental completeness,
soundness and efficiency.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

19/19

Main Takeaways

1 PSCPACE machine + IVC + uniqueness
⇒ PLS ∩ PPAD hardnessy get rid of the uniqueness property

PSCPACE machine + IVC ⇒ PLS hardness

2 How to construct IVC with incremental completeness with
less assumption?

By CP Graphs and Proof of Sequential Work!
• Exponential steps to compute the root, but only requires

polynomial space
• Incrementally generateable proofs by DLM.



On the
Cryptographic
Hardness of
Local Search

Nir Bitansky,
Idan Gerichter

Recap

Main Theorem

Construction

Takeaways

19/19

Main Takeaways

1 PSCPACE machine + IVC + uniqueness
⇒ PLS ∩ PPAD hardnessy get rid of the uniqueness property

PSCPACE machine + IVC ⇒ PLS hardness

2 How to construct IVC with incremental completeness with
less assumption?

By CP Graphs and Proof of Sequential Work!
• Exponential steps to compute the root, but only requires

polynomial space
• Incrementally generateable proofs by DLM.


	Recap
	Main Theorem
	Construction
	Takeaways

