```
TOPIC 1:Factoring & TFNP subclasses presenter: Yuriko Nishijima
    supporter: Akash Kumar
```

Agenda:

- General overview
paper 1
- dets of PPA (LONELY) , PPP (PIGEON)
- Theorem 5 (reduce factoring specific kind of ints to LONELY) + proof
- Theorem 6 (reduce factoring another specific kind of ints to PLGEON + randomness) + proof
paper 2
- Lets of Legendre \& Jacobi symbol
- Lets of diff kinds of factoring problems
- Theorem 3.5 (FACROOTMUL EPWPP) + proof
- Lemmas to make Turn 3.5 more interesting
- Theorem 3.7 (Factoring SPPA)
- Overall Conclusion

Paper 1: On the TFNP Complexity of Factoring
by Buresh-Oppenkeim $\quad\left\{\begin{array}{l}\text { - total (solution always exists for any input problem) } \\ \text { - solution verifiable in polynomial time }\end{array}\right.$

Main Idea: We can reduce factoring problem of specific kinda integers to PPA subclass of TFNP
(more general integers to $\frac{\text { PPD }}{\text { in comparison with }}+$ using randomness

Def. PPA is the class of search problems in TFNP that are polytime reducible to LONELY problem
 "x/y is matched"

Def. (total NP search problem) LONELY: Given a circuit $c:\{0.1\}^{n} \rightarrow\{0.1\}^{n}$, find either
(i) $x \in\{0.1\}^{n} \backslash\left\{0^{n}\right\}$ s.t. $c\left(0^{n}\right)=x$

"On is not necessarily unmatched, easy case" "! (could be $\left(10^{n}\right)=x$ and $c(x)=0^{n}$, then it's a match)
(or in other words, 0^{n} has to be taken away from domain, to make the \# elements to be paired odd)
\Rightarrow condition of the circuit is not satisfied
\Rightarrow we don't weed to find an unmatched element
(ii) $x, y \in\{0.1\}^{n} \backslash\left\{0^{n}\right\}$ s.t. $c(x)=y$ but $c(y) \neq x \quad$ "unmatched string" "

(iii) $x \in\{0.1\}^{n} \backslash\left\{0^{n}\right\}$ s.t. $c(x)=x$

"another unmatched string" !
you can flip the domain and codomain

Def. good integer N^{\prime} : odd, positive integer s.t. $\nexists x$ s.t $x^{2}=-1\left(\bmod N^{\prime}\right)$
$\mapsto-1$ is not a quadratic residue $\bmod N^{\prime}$
Def. 4good integer $N: \uparrow$ requirement t is $N \equiv 1(\bmod 4)$
NP search problem (basically factoring 4 good integers except for some cases)
4Good-Integer-Factoring (4GIF): Given a positive integer N, return
(i) N, if $N \neq 1 \bmod 4$ or if N is prime or if $N=1 ; \longleftarrow$ cases when you don't have to factor N (excluding these cases
(ii) a non-trivial factor of N or a square root of -1 modulo N, otherwise. luz it's too hard?)

Theorem 5 4GIF EPPA (4GIF is reduciable to instance of LONELY problem)
Proof (reduction) sketch:

proof. let N be a 4 good integer.
We know

- N is an integer that's not prime
$-N \equiv 1(\bmod 4) \rightarrow \operatorname{odd}$
let $n=\log N$ (i.e. N can be represented as n-bit binary string)

We create the following correspondence:

group element $x(\bmod N)$	n-bits binary strings
1	0^{n}
any \#	binary representation of it -1

We create a matching of integers $x \in[1, N]$ (= create circuit C that finds a matching)

1. if $x=1$, matches to itself.
because $N \equiv 1(\bmod 4)$

$$
\leftrightarrow N=4 k+1
$$

2. if $x>\frac{N-1}{2}$: $x+1 / x-1$

$$
\rightarrow \frac{N-1}{2}=\frac{4 k+4-1}{2}=2 k \rightarrow \text { even \# }
$$

matches with an integer next to it \Rightarrow there's gonna be even \# of pairs.

* veason why half range

$$
(N-1)^{2} \equiv 1 \bmod N
$$

$$
\left(N^{2}-2 N+1 \equiv 1 \bmod N\right.
$$ can just return $N-1$ it it's full-vange but it'll break computation in (3)

3. if $1 \leqslant x \leqslant \frac{N-1}{2}$
if x is unit (i.e. invertible): matches with the inverse assume that you get a " not unit (ie. non-invertible): matches with itself solution to this circuit

Let x is a solution to LONELY problem, which can be categorized into type (i)~ (iii)
We know that x is in "positive" because x that lands in "negative" portion are all perfectly matched nov it is 1 because 1 maps to itself by definition.
if $y=\left|x^{-1}\right|$ then $x=|y-1|$ (i.e. x and y ave the inverse to each other mod N)
so there are no solutions in LONELY type (ii)
\Downarrow
All the solutions are in LONELY type (iii)
\downarrow
Amy \# (other than 0) matched with itself $x \rightarrow x=\left|x^{-1}\right|$
\rightarrow not invertible $x=x-1 \quad x=-x-1$
$\rightarrow x^{2} \equiv \pm 1(\bmod N) \leftarrow \begin{array}{ll}x=x \downarrow \times x & \downarrow \times x \quad \downarrow \times x \\ \downarrow \times x / 2 \\ x^{2}=1 & x^{2}=-1 \\ \end{array}$
Given x, we can do the following computation to factor 4 good integers

1) if $x^{2}=-1(\bmod N)$
return x (this is a N we don't have to consider)
\downarrow
2) if $\operatorname{gcd}(x, N) \neq 1$ (i.e. x and N ave not co-prime to each other $/ x$ is not invertible mod N) return gad (x, N) (using extended Euclid Algorithm, this is computable in polytime) \rightarrow non-trivial factor of $N \checkmark$
3) if $x^{2}=1(\bmod N)$,
$\Rightarrow x^{2}-1=0 \quad$ divisible by $N(\equiv 0(\bmod N))$
$\Rightarrow(x+1)(x-1)=0$ and we know $|x| \neq 1$
return gad $(x+1, N)$
\therefore 4GIF EPPA (4GIF is reduciable to instance of LONELY problem)

Def. PPP is the class of search problems in TFNP that are polytime reducible to PIGEON
Def. PIGEON: Given $c^{\swarrow}:\{0.1\}^{\text {circuit }} \rightarrow\{0.1\}^{n}$, solution
return either (i) $\quad x \in\{0.1\}^{n}$ s.t. $c(x)=0^{n}$
or (ii) $x_{1}, x_{2} \in\{0.1\}^{n}$ s.t. $x_{1} \neq x_{2}$ and $c\left(x_{1}\right)=c\left(x_{2}\right)$
(or both)
e.g. $f(x)=0^{n} / f(x)=x 0$ (appending 0 at the end)
proof (of why PPP \subseteq TFNP)
if (i) holds, this problem is verifiable in polytime and total, hence TFNP J
if (i) doesn't hold, (meaning there is no preimage that maps to 0^{n} (any arbitrary output you choose works)
then domain size $=2^{n}$
codomain size $\leqq 2^{n}-1$
\rightarrow By P.h.P,

Def. FP: class of search problems in FNP that are solvable by deterministic Turing Machine
\rightarrow def. TFP \rightarrow FP \cap TFNP: total version of FP
\rightarrow covered in last class but slightly different definitions

Def. FZPP: class of search problems in FNP that are solvable by randomized Turing Machine \rightarrow def. TFZPP $=$ TIP \cap TFNP: total version of FZPP

Def. good integer $N:$ odd, positive integer s.t. $\nexists x$ s.t $x^{2}=-1(\bmod N)$
$\leftrightarrow-1$ is not a quadratic residue $\bmod N^{\prime}$
\rightarrow NP search problem with restriction
Good-Integer-Factoring (GIF): Given a positive integer N, return
(i) N, if N is prime or if $N=1$;
(ii) a non-trivial factor of N or a square root of -1 modulo N, otherwise.

Theorem 6 GIF ETFZPP PPP (GIF can be reduce to an instance of TF ZPP with PPP oracle)

Proof (reduction) sketch:

with probability at least $\frac{1}{2}$
proof. Let N be a good integer that we want to factor.
We know that

- N is composite \quad is odd $\quad \begin{gathered}\text { return } N \\ 1\end{gathered} \quad 2$ if given input doesn't satisfy this condition)

Choose a number $a \in\{1, \ldots$,$\} randomly$
$\frac{N-1}{2}$ "positive" range
let $n=\log N$ (ie. N can be represented as n-bit binary string)
We create the following correspondence:

\#s	n-bits binary strings (\# of them $=x-1$)
-1	0^{n}
any \# $\# 1,2, \ldots, N)$	binary representation of it

Now, we create a mapping of integers $x \in[1, N]$ (construct a circuit)

- if $x=-1$, then $x+0 \leftrightarrow c(-1)=a \quad \cdots$ case (1)
- if $x>\frac{N-1}{2}$, then x to $x \leftrightarrow c(x)=x$ (2)
- if $x \leqq \frac{N-1}{2}$, then x to $\left|x^{2}\right| \leftrightarrow c(x)=\left|x^{2}\right| \quad \ldots \quad$.. (3)

Recall we are allowed to have access PPP oracle, which gives you a solution to a PIGEON problem
$x . y \in\{0.1\}^{n}$ s.t. $c(x)=c(y) \pi$
bc it's not possible for c to output -1 , all oracle solutions you'd get is of type (ii)
Let us analyze possible solutions $x . y$ that PPP oracle would return and the probability distribution of them

- Case 1: one of the solution (let's say x) is -1
then x maps to $a: c(x)=a$ and $c(y)=a=\left|y^{2}\right|$ (case (3))

$$
\rightarrow \quad \exists y \text { s.t. } y^{2}=a \text { or } y^{2}=-a(\bmod N)
$$

$$
\text { (ie. } a \text { or }-a \text { is a } g . r \text {) }
$$

* This is a bad case, which happens w/p less than $\frac{1}{2}$
\rightarrow it it happens, we will have to repeat the whole process with new random a
WHY?
def. \# of qu. of N

$\frac{l(N)}{2^{k}}=\frac{(p-1)(q-1)}{4} \Rightarrow \operatorname{prob}(n \cdot q \cdot v)=\frac{\frac{(p-1)(q-1)}{4} \times 2^{\downarrow}}{N}=\frac{\frac{(p-1)(q-1)}{2}}{p \cdot q} \leqq \frac{1}{2}$
- Case 2: Neither of x, y is $=-1$ and $x \neq y$

$$
\text { then } \quad C(x)=c(y)=z
$$

* This is a good case, which happens w/p more than $\frac{1}{2}$

Given x and y, we can do the following computation to factor good integers

1) if $x^{2}=-y^{2}(\bmod N)$ then N is not good so
return $x y-1 \quad(=$ square root of -1$)$
\downarrow
2) if gad $(y, N) \neq 1$ (i.e. Y and N are not co-prime to each other / y is not invertible mod N) return ged (y, N) (using extended Euclid Algorithm, this is computable in polytime)
3) if $x^{2}=y^{2}(\bmod N)$
$\Rightarrow x^{2}-y^{2}=0$
$\Rightarrow(x+y)(x-y)=0$ but since we know x, y are positive and $x \neq y$
$\frac{\text { return ged }(x+y, N)}{\rightarrow \text { non-trivial factor of } N}$
\therefore GIF ETFZPP PPP (GIF can be reduce to an instance of TF ZPP with PPP oracle)

Open Problem

it ERH (Extended Riemann Hypothesis) is true, $\quad r^{2}$ it's guaranteed that you can find a, which is u.q. $r \in\left[1, \log ^{2}(N)\right]$
\Downarrow
small range
\Downarrow
can test them all in a brute -force way

Paper 2: Integer Factoring and modular square roots by Jerabek
Main Idea:
\rightarrow special case of factoring problem
Theorem 3.5: FACROOTMUL problems reduces to an instance of WEAK -PIGEON problem. T improvement from Theorem 5 in Paper 1

Theorem 3.7: Factoring problem reduces to an instance of LONELY problem with randomness. τ significant improvement from Theorem 6 in Paper 1

Def. Legendre and Jacobi symbols
Given $h \in \mathbb{R}$, and p odd prime
we define the Legendre symbols $\left(\frac{h}{p}\right)$ as

$$
\left.\underset{\text { prime }}{\left(\frac{h}{P}\right.}\right)= \begin{cases}0 & \text { if } p \mid h \\ 1 & \text { if } p X h \text { and } h \text { is a quadratic res } \bmod p \\ -1 & \text { if } p \nmid h \text { and } h \text { is a quadratic non res. mod } p\end{cases}
$$

$\left(\frac{h}{p}\right)=h^{\frac{p-1}{2}}(\bmod p)$ by Euler's criterion applys universally
you can also use this $\underline{\underline{p}}^{\alpha}$ (power of primes, special composite)
Given $h \in \mathbb{R}$, and $n \geq 1$ odd number, $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}, p_{1}$ odd prime
we define Jacobi symbols $(\underset{\Omega}{(\Omega)})$ as

$$
\left\{\begin{array}{l}
\left(\frac{h}{n}\right)=\left(\frac{h}{p_{1}}\right)^{\alpha_{1}} \cdot\left(\frac{h}{p_{2}}\right)^{\alpha_{2}} \cdots\left(\frac{h}{p_{k}}\right)^{\alpha_{k}} \\
\left(\frac{h}{1}\right)=1
\end{array}\right.
$$

[a] $\in \mathbb{R}_{r}^{*}$
b is a $q \cdot r \bmod w$
$\leftrightarrow \mu$ is a quadratic res modulo $\mathrm{Pi} \forall i$
$\frac{\text { Legendre symbols }}{\text { denominator: prime }}\left\{\begin{array}{ll}=1 \text {; } & \text { es } q \cdot r . \\ =-1 \text { : } & \text { \& } q \text { non } r .\end{array}\right\}$ can apply Euler's criterion
$\frac{\text { Jacobi symbols }}{\text { denominator: composite }} \begin{cases}=1 ; & \text { no information: } \\ =-1 ; & \text { u } g \text { eon } r .\end{cases}$

$$
\begin{aligned}
e \cdot g \cdot & w=p q \\
35 & =5 \cdot 7
\end{aligned} \quad\left(\frac{l}{w}\right)=\left(\frac{l}{p}\right)\left(\frac{l}{q}\right)
$$

if $\left(\frac{h}{p}\right)=1,\left(\frac{h}{q}\right)=1 \Rightarrow h$ is a $q \cdot r \cdot \bmod n$ and $\left(\frac{h}{n}\right)=\left(\frac{h}{p}\right)\left(\frac{h}{q}\right)=1$

$$
\text { if }\left(\frac{\mu}{p}\right)=-1,\left(\frac{\mu}{q}\right)=-1 \Rightarrow \text { his a } q \text {.non.r } \bmod w \text { and }\left(\frac{\mu}{n}\right)=\left(\frac{\mu}{p}\right)\left(\frac{\mu}{q}\right)=1
$$

Different kinds of factoring problems
Def. FACROOT problem: given an odd integer $n>0$ and integer a s.t. $\left(\frac{a}{n}\right)=1$, find either a nontrivial divisor of n, or a square root of a mod n.

Def. FACROOTMUL problem: special cases of FACROOT. Given odd $w>0$ and integers a and b, find a nontrivial divisor of n, or a square root of owe of a, b or $a b \bmod n$.

Def. WEAKFACROOT problem: given an odd $n>0$ and a, b s.t. $\left(\frac{a}{n}\right)=1$ and $\left(\frac{b}{n}\right)=-1$, find a nontrivial divisor of n, or a square root of a $\bmod n$.

$$
\uparrow \text { cop-out case }
$$

Theorem 3.5: FACROOTMUL EPWPP i.e.
FACROOTMUL problems reduces to an instance of WEAK - PIGEON problem. T improvement from Theorem 5 in Paper 1
proof. Assume $n=$ odd int. $a, b=$ int.
if $\operatorname{gcd}(a, n) \neq 1$ or $\operatorname{gcd}(b, n) \neq 1, \operatorname{veturn}(n, a)$ or (n, b) respectively.

* we can assume that both a, b are coprime to n.

$$
\text { let } \begin{align*}
f: \frac{h 0,1,2\}}{=3} \times\left[\frac{\left.1, \frac{n-1}{2}\right]}{\frac{n}{2}}\right] \rightarrow \frac{[1, n-1]}{w}: \\
f \frac{(i, x)}{3 \times 2}= \begin{cases}a_{i} x^{2} \bmod \operatorname{mange} \text { size } \\
x & \text { if }(n, x)=1 \\
\text { otherwise }\end{cases} \tag{1}
\end{align*}
$$

combination of 2 inputs
where $a_{0}=1, a_{1}=a, a_{2}=b$.
Since the size $($ domain $)=\operatorname{size}($ range $) \times \frac{3}{2}$,
we can use WEAKPIGEON to find a collision: $f(i, x)=f(i, y)$ and $\langle i, x\rangle \neq\langle i, y\rangle$
Now, assume you get a solution x, y to WAAKPFGEON problem:
(you can assume that $\operatorname{gcd}(n, x)=\operatorname{gcd}(n, y)=1$ as otherwise we can factor n.) \rightarrow if not just return $\operatorname{gcd}(n, x)$ or $\operatorname{gcd}(n, y)$ Given $\langle i, x\rangle \neq\langle j, y\rangle$, there are 2 cases:
case 1: $i=j$ (this is a good case, bc you can actually factor N)
then you must have $x \neq y(\bmod n)$

also $x \neq-y(\bmod n) \quad(b c$ solution resides in "positive" range) (i.e. first halt of $[1, N-1]$

$$
\begin{array}{rlr}
f(i, x) & =f(j, y) & \text { (collision) } \\
\Leftrightarrow x_{i} x^{2} & =a / y^{2} \quad \text { by (1) } \\
x^{2} & =y^{2} & \\
x^{2}-y^{2} & =0 \quad \text { since } x \neq y, \neq 0 \\
(x+y) & (x-y)=0
\end{array}
$$

\rightarrow return ged $(x-y, N)$, which is a nontrivial factor of N

$$
\begin{aligned}
& \text { case 2: } i \neq j \text { (returning cop-out values) } \\
& \text { For simplicity, assume } i<j \\
& f(i, x)=f(j, y) \quad \text { (collision) } \\
& \Leftrightarrow a_{i} x^{2}=a_{j} y^{2} \quad \text { by (1) } \\
& \downarrow \times\left(y^{-1}\right)^{2} \quad \downarrow \times\left(y^{-1}\right)^{2} \\
& a_{i}\left(x y^{-1}\right)^{2}=a_{j} \\
& \left(x y^{-1}\right)^{2}=a_{j} a_{j}-1 \\
& \text { Recall } a_{0}=1, a_{1}=a, a_{2}=b \\
& \text { 1) } i=0, j=1 \\
& a_{1} a_{0}^{-1}=(x y-1)^{2} \\
& \text { a. } x^{-1}=\left(x y^{-1}\right)^{2} \\
& a=\left(x y^{-1}\right)^{2} \\
& \Rightarrow \text { return } x y^{-1} \\
& \text { 2) } i=1, j=2 \\
& a_{2} a_{1}^{-1}=\left(x y^{-1}\right)^{2} \quad \text { we are allowed to return } \\
& b a^{-1}=\left(x y^{-1}\right)^{2} \\
& \downarrow \times a^{2} \quad \downarrow \times a^{2} \\
& \text { square volt of one of } a, b \text { or } a b \bmod n \text {. } \\
& \text { as FACTROOTMUL defines. } \\
& \text { 3) } i^{\prime}=0, j=2 \\
& a_{2} a_{0}{ }^{-1}=(x y-1)^{2} \\
& b X^{T}=(x y-1)^{2} \\
& b=(x y-1)^{2} \\
& \Rightarrow \text { return } x y-1
\end{aligned}
$$

Here's another finding of this paper that makes Theorem 3.5 more interesting...

Lemma 3.2
(i) WеaкFacRoот \triangle_{m} FacRootMul \leq_{m} FacRoot;
\longrightarrow reduces \longrightarrow harder problem
proof. WEAKFACROOT is a special case of FACROOTMUL since

$$
\begin{aligned}
& \left(\frac{a}{n}\right)=1 \text { and }\left(\frac{b}{n}\right)=-1 \Rightarrow\left(\frac{a}{n}\right) \times\left(\frac{b}{n}\right)=1 \times-1=-1 \Rightarrow\left(\frac{a b}{n}\right)=-1 \\
& \Rightarrow \text { neither } b \text { nor } a b \text { is a } q \cdot r \text {. } \bmod n
\end{aligned}
$$

For an instance of FACTROOTMUL problem
$\begin{aligned}\left(\frac{x}{n}\right) & =\frac{1}{\eta} \text { for some } x \in\{a, b, a b\} \rightarrow \text { we can choose such an } x \text { as the Jacobi symbol } \\ \text { no information about the quadratic reciprocity. } & \text { is poly-time computable. }\end{aligned}$
(iii) Factoring $\leq_{m}^{\mathrm{RP}, 1 / 2}$ WeakFacRoot.

proof (skip?)

(iii): FACROOT \leq_{m}^{RP} WEAKFACROOT by (i) and amplification of the success rate of \leq_{m}^{ZPP}, hence Factoring $\leq_{m}^{\mathrm{RPP}, 1 / 2+\varepsilon}$ WeakFacRoot for any $\varepsilon>0$ by (ii). We can get rid of the ε by observing that the proof of (ii) actually shows Factoring $\leq_{m}^{\mathrm{RP}, 1 / 2-1 / \sqrt{n}}$ FacRoot, taking into account residues that share a factor with n. We can reduce the error of the $\leq_{m}^{\text {LP }}$ reduction in (i) to $1 / \sqrt{n}$, hence Factoring $\leq_{m}^{\mathrm{RP}, 1 / 2}$ WeakFacRoot.

We remark that there is another well-known randomized reduction of factoring to square root computation modulo n due to Rabin [15], but it is suited for a different model. In the notation above, the basic idea of Rabin's reduction is that we choose a random $1<a<n$, and if it is coprime to n, we pass n, a^{2} to the FACRoot oracle. If the oracle were implemented as a (deterministic or randomized) algorithm working independently of the reduction without access to its random coin tosses, we would have a $1 / 2$ chance that the root b of a^{2} returned by the oracle satisfies $a \not \equiv \pm b(n)$, allowing us to factorize n. However, this does not work in our setup. According to the definition of a search problem reduction, the reduction function must be able to cope with any valid answer to the oracle query - there is no implied guarantee that oracle answers are computed independently of the environment. In particular, it may happen the oracle is devious enough to always return the root $b=a$ we already know.

What we need now is to show that FAcRoot or some of its variants belongs to PPA and PWPP.

Summary so far:

Another result of this paper..
Theorem 3.7
(i) FACTORING, FULLFAC $\leq{ }_{m}^{\mathrm{RP}} \mathrm{PPA}$; ... (2)
(proof omitted)

By (1) and (2)
we can conclude that

FACTORING problem reduces to both PWPP + randomness $\left(w / P \geqq \frac{1}{2}\right)$ PPA + randomness
as the state of the art in the factoring a complexity research field

