Factoring and TFNP Part 2

Akash Kumar ${ }^{1}$, Yuriko Nishijima ${ }^{2}$

February 1, 2024

[^0]Theme: How Factoring fits into subclasses of TFNP. First paper proved:
(1) 4GoodIntegerFactoring \in PPA

- Reduction to Lonely
- "4Good" means $N \equiv 1(\bmod 4)$ and -1 is not quadratic residue $\bmod N$
(2) GOODINTEGERFACTORING $\leq R P, \frac{1}{2} P P P$
- Randomized reduction to Pigeon
- "Good" means -1 is not quadratic residue $\bmod N$
- ERH allows us to derandomize result by guarantee n.q.r. $a \in\left(1,3 \cdot \log ^{2}(N)\right]$

Where We're Going

Second paper builds on this by dropping the " 4 Good " or "Good" requirements.
(1) FACTORING randomly reduces to $\mathrm{PWPP} \subseteq \mathrm{PPP}$
(2) Factoring randomly reduces to PPA

The Trajectory of (1):

```
Factoring \leq* FacRoot \leq* WeakFacRoot \leq FacRootMul \in PWPP
```

To prove the above, we need to define the Jacobi Symbol and variations of the Factoring problem...
($*$ denotes a randomized reduction)

Legendre Symbol

For an odd prime p, the Legendre Symbol is

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a \\ +1 & \text { if } p \nmid a \text { and } a \text { is quadratic residue } \bmod p \\ -1 & \text { if } p \nmid a \text { and } a \text { is not quadratic residue } \bmod p\end{cases}
$$

It is efficiently computable (will follow from later discussion).

Jacobi Symbol

More generally, for odd $N=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$, the Jacobi Symbol is

$$
\left(\frac{a}{N}\right)=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right)^{\alpha_{i}}
$$

It is efficiently computable, even without knowing the prime factorization of N, due to Quadratic Reciprocity:

$$
\left(\frac{M}{N}\right)\left(\frac{N}{M}\right)=(-1)^{\frac{(M-1)(N-1)}{4}}= \begin{cases}-1 & \text { if } M \equiv N \equiv 3 \quad(\bmod 4) \\ +1 & \text { otherwise }\end{cases}
$$

along with two "base cases":

$$
\left(\frac{-1}{N}\right)=(-1)^{\frac{N-1}{2}} \quad\left(\frac{2}{N}\right)=(-1)^{\frac{N^{2}-1}{8}}
$$

Interpreting the Jacobi Symbol

The meaning that the Jacobi Symbol tells you is more complicated than the Legendre Symbol, and is why determining if a is a quadratic residue mod N isn't easy.

- If $\left(\frac{a}{N}\right)=-1$, then you know a is not a q.r. $\bmod N$
- If $\left(\frac{a}{N}\right)=1$, then a could or could not be a q.r. $\bmod N$ Why the uncertainty? Suppose $N=p q$. There are two cases.
- $\left(\frac{a}{N}\right)=\left(\frac{a}{p}\right)\left(\frac{a}{q}\right)=1 \times 1 \Longrightarrow a$ is a q.r.
- $\left(\frac{a}{N}\right)=\left(\frac{a}{p}\right)\left(\frac{a}{q}\right)=(-1) \times(-1) \Longrightarrow a$ is not a q.r.

Follows that if we could factor N, then we could efficiently determine if a is a q.r. or not.
Fact: For $N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ and a s.t. $\operatorname{gcd}(a, N)=1$,
a is a q.r. $\bmod N$ iff $\left(\frac{a}{p_{i}}\right)=1$ for all $i \in[k]$.

Variants of FACtoring

$\operatorname{FacRoot}(N, a):$ Given odd N, and a s.t. $\left(\frac{a}{N}\right)=1$, find

- nontrivial divisor of N, or
- square root of a

FacRootMul(N, a, b): Given odd N, and $a, b \in \mathbb{Z}$, find

- nontrivial divisor of N, or
- square root of one of a, b, or $a b$

WeakFacRoot (N, a, b) : Given odd N, and a, b s.t. $\left(\frac{a}{N}\right)=1$ and $\left(\frac{b}{N}\right)=-1$, find

- nontrivial divisor of N, or
- square root of a
Lemmas
Theorem
Conclusion
Citations

Factoring and

Factoring $\leq *$ FacRoot

If N is even or a perfect power, then factoring is easy; assume $N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, with $k \geq 2$.

Factoring \leq * FacRoot

If N is even or a perfect power, then factoring is easy; assume $N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, with $k \geq 2$.
Choose random $a \in\{1, \ldots, N-1\}$. If $\operatorname{gcd}(a, N) \neq 1$, return the gcd as the factor. Else, feed (N, a) to the FacRoot oracle.

Factoring $\leq *$ FacRoot

If N is even or a perfect power, then factoring is easy; assume $N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, with $k \geq 2$.
Choose random $a \in\{1, \ldots, N-1\}$. If $\operatorname{gcd}(a, N) \neq 1$, return the gcd as the factor. Else, feed (N, a) to the FacRoot oracle.
We want a to satisfy $\left(\frac{a}{N}\right)=1$ and a not a q.r. so that the FAcRoot oracle is forced to return a factor of N.

Factoring $\leq *$ FacRoot

If N is even or a perfect power, then factoring is easy; assume $N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, with $k \geq 2$.
Choose random $a \in\{1, \ldots, N-1\}$. If $\operatorname{gcd}(a, N) \neq 1$, return the gcd as the factor. Else, feed (N, a) to the FacRoot oracle. We want a to satisfy $\left(\frac{a}{N}\right)=1$ and a not a q.r. so that the FAcRoot oracle is forced to return a factor of N.
First, what's the probability that $\left(\frac{a}{N}\right)=1$? Among $a \in \mathbb{Z}_{N}^{*}$, there's a half chance that $\left(\frac{a}{N}\right)=1$. In fact, we can improve from $1 / 2$ to 1 with the following trick: instead of randomly choosing a, now randomly choose $a, b \in[N-1]$. Among $c \in\{a, b, a b\}$, take the first so that $\left(\frac{c}{N}\right)=1$. Now you are guaranteed to find an element with Jacobi Symbol equal to 1 because $\left(\frac{a}{N}\right)=\left(\frac{b}{N}\right)=-1 \Longrightarrow\left(\frac{a b}{N}\right)=1$.

Factoring $\leq *$ FacRoot

If N is even or a perfect power, then factoring is easy; assume $N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, with $k \geq 2$.
Choose random $a \in\{1, \ldots, N-1\}$. If $\operatorname{gcd}(a, N) \neq 1$, return the gcd as the factor. Else, feed (N, a) to the FacRoot oracle. We want a to satisfy $\left(\frac{a}{N}\right)=1$ and a not a q.r. so that the FacRoot oracle is forced to return a factor of N.
First, what's the probability that $\left(\frac{a}{N}\right)=1$? Among $a \in \mathbb{Z}_{N}^{*}$, there's a half chance that $\left(\frac{a}{N}\right)=1$. In fact, we can improve from $1 / 2$ to 1 with the following trick: instead of randomly choosing a, now randomly choose $a, b \in[N-1]$. Among $c \in\{a, b, a b\}$, take the first so that $\left(\frac{c}{N}\right)=1$. Now you are guaranteed to find an element with Jacobi Symbol equal to 1 because $\left(\frac{a}{N}\right)=\left(\frac{b}{N}\right)=-1 \Longrightarrow\left(\frac{a b}{N}\right)=1$.
Next, what's the probability that a random residue $c \in[N-1]$ s.t. $\left(\frac{c}{N}\right)=1$ is a quadratic residue? By the "Fact" from earlier, it's $\frac{1}{2^{k}}$. Hence, our success probability is $1-\frac{1}{2^{k}} \geq \frac{1}{2}$.

FacRoot \leq * WeakFacRoot

Recall that the input to FacRoot is (N, a), and the input to WeakFacRoot is (N, a, b), so all we need to do is find b s.t. $\left(\frac{b}{N}\right)=-1$.
To do so, we pick a random $b \in[N-1]$, and this shall succeed with probability $\frac{1}{2}$.
By succeed, we mean

- $\operatorname{gcd}(b, N) \neq 1$, so return that factor; or,
- $\left(\frac{b}{N}\right)=-1$

WeakFacRoot \leq FacRootMul

Recall that WeakFacRoot takes (N, a, b) as input, and so does FacRootMul. I claim that to solve WeakFacRoot, one can simply pass the given input (N, a, b) to the FacRootMul oracle.

FacRootMul(N, a, b) could never return a square root of b or $a b$ since $\left(\frac{b}{N}\right)=\left(\frac{a b}{N}\right)=-1$. Hence, the output of FacRootMul(N, a, b) works.

FacRootMul \in PWPP

We are given, as input, (N, a, b). If either a or b shares a factor with N, return it; so we assume $\operatorname{gcd}(a, N)=\operatorname{gcd}(b, N)=1$.
Consider the polytime-computable function

$$
f:\{0,1,2\} \times\left\{1, \ldots, \frac{N-1}{2}\right\} \rightarrow\{1, \ldots, N-1\}:
$$

$$
f(i, x)= \begin{cases}a_{i} x^{2} & (\bmod N) \\ x & \text { if } \operatorname{gcd}(x, N)=1 \\ \text { otherwise }\end{cases}
$$

where $a_{0}=1, a_{1}=a, a_{2}=b$.
The domain of f is $3 / 2$ times larger than its codomain, so the WEAKPigeon oracle gives us a collision: (i, x) and (j, y) s.t. $f(i, x)=f(j, y)$ and $(i, x) \neq(j, y)$.
Again, we assume $\operatorname{gcd}(x, N)=\operatorname{gcd}(y, N)=1$, as otherwise we can factor N.

FacRootMul \in PWPP

With the collision, there are two cases to consider.
Case 1: $i=j$ (good case)
Then $f(i, x)=f(j, y) \Longrightarrow x^{2} \equiv y^{2}$. In addition, $x \not \equiv \pm y$ since $(i, x) \neq(j, y)$, which means that $\operatorname{gcd}(N, x-y)$ returns a nontrivial factor of N.
Case 2: $i<j$ (cop out case)
Then $f(i, x)=f(j, y) \Longrightarrow\left(x y^{-1}\right)^{2}=a_{j} a_{i}^{-1}$.

- $\left(x y^{-1}\right)^{2}=a$

Return $x y^{-1}$

- $\left(x y^{-1}\right)^{2}=b$

Return $x y^{-1}$

- $\left(x y^{-1}\right)^{2}=b a^{-1} \Longrightarrow\left(a x y^{-1}\right)^{2}=a b$ Return $a x y^{-1}$

FActoring \in^{*} PWPP \cap PPA

Factoring $\leq *$ FacRoot $\leq *$ WeakFacRoot \leq FacRootMul \in PWPP

Via the chain of reductions above, we have shown that Factoring is randomly reducible to WeakPigeon.
The paper additionally shows that Factoring is randomly reducible to Lonely, i.e. Factoring \in^{*} PPA. Hence,

$$
\text { FACTORING } \in^{*} \text { PWPP } \cap \text { PPA }
$$

Factoring and
TFNP Part 2
Akash Kumar, Yuriko Nishijima

Overview
Definitions
Lemmas
Theorem
Conclusion
Citations
(1) [1]
(2) [2]

Emil Jerabek.
Integer factoring and modular square roots. 2015.

[^0]: ${ }^{1}$ Columbia University, New York. abk2187@columbia.edu
 ${ }^{2}$ Columbia University, New York. yn2411@columbia.edu

