Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusion

Citations

Factoring and TFNP Part 2

Akash Kumar¹, Yuriko Nishijima²

February 1, 2024

¹Columbia University, New York. abk2187@columbia.edu
²Columbia University, New York. yn2411@columbia.edu

Akash Kumar, Yuriko Nishijima

Overview

- Definitions
- Lemmas
- Theorem
- Conclusion
- Citations

Where We Got Up To

Theme: How FACTORING fits into subclasses of TFNP. First paper proved:

- **1** 4GoodIntegerFactoring \in PPA
 - Reduction to LONELY
 - "4Good" means $N \equiv 1 \pmod{4}$ and -1 is not quadratic residue mod N

2 GOODINTEGERFACTORING $\leq^{\mathsf{RP},\frac{1}{2}}\mathsf{PPP}$

- Randomized reduction to PIGEON
- "Good" means -1 is not quadratic residue mod N
- ERH allows us to derandomize result by guarantee n.q.r. $a \in (1, 3 \cdot \log^2(N)]$

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusion

Citations

Where We're Going

Second paper builds on this by dropping the "4Good" or "Good" requirements.

1 FACTORING randomly reduces to $PWPP \subseteq PPP$

2 FACTORING randomly reduces to PPA

The Trajectory of (1):

 $Factoring \leq^* FacRoot \leq^* WeakFacRoot \leq FacRootMul \in PWPP$

To prove the above, we need to define the Jacobi Symbol and variations of the FACTORING problem...

(* denotes a randomized reduction)

Akash Kumar, Yuriko Nishijima

Legendre Symbol

Overview

Definitions

Lemmas

Theorem

Conclusio

Citations

For an odd prime p, the Legendre Symbol is

$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p \mid a \\ +1 & \text{if } p \nmid a \text{ and } a \text{ is quadratic residue mod } p \\ -1 & \text{if } p \nmid a \text{ and } a \text{ is not quadratic residue mod } p \end{cases}$

It is efficiently computable (will follow from later discussion).

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusion

Citations

Jacobi Symbol

More generally, for odd $N = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, the Jacobi Symbol is

$$\left(\frac{a}{N}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{\alpha_i}$$

It is efficiently computable, even without knowing the prime factorization of N, due to Quadratic Reciprocity:

$$\left(\frac{M}{N}\right)\left(\frac{N}{M}\right) = (-1)^{\frac{(M-1)(N-1)}{4}} = \begin{cases} -1 & \text{if } M \equiv N \equiv 3 \pmod{4} \\ +1 & \text{otherwise} \end{cases}$$

along with two "base cases":

$$\left(\frac{-1}{N}\right) = (-1)^{\frac{N-1}{2}} \qquad \left(\frac{2}{N}\right) = (-1)^{\frac{N^2-1}{8}}$$

Akash Kumar, Yuriko Nishijima

- Overview
- Definitions
- Lemmas
- Theorem
- Conclusion
- Citations

Interpreting the Jacobi Symbol

The meaning that the Jacobi Symbol tells you is more complicated than the Legendre Symbol, and is why determining if a is a quadratic residue mod N isn't easy.

- If $\left(\frac{a}{N}\right) = -1$, then you know *a* is not a q.r. mod *N*
- If $\left(\frac{a}{N}\right) = 1$, then *a* could or could not be a q.r. mod N

Why the uncertainty? Suppose N = pq. There are two cases.

- $\left(\frac{a}{N}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{q}\right) = 1 \times 1 \implies a \text{ is a q.r.}$
- $\left(\frac{a}{N}\right) = \left(\frac{a}{p}\right)\left(\frac{a}{q}\right) = (-1) \times (-1) \implies a \text{ is not a q.r.}$

Follows that if we could factor N, then we could efficiently determine if a is a q.r. or not.

Fact: For $N = \prod_{i=1}^{k} p_i^{\alpha_i}$ and a s.t. gcd(a, N) = 1,

a is a q.r. mod N iff $\left(\frac{a}{p_i}\right) = 1$ for all $i \in [k]$.

Akash Kumar, Yuriko Nishijima

Overview

- Definitions
- Lemmas
- Theorem
- Conclusion
- Citations

Variants of FACTORING

FACROOT(N, a): Given odd N, and a s.t. (^a/_N) = 1, find
nontrivial divisor of N, or

square root of a

FACROOTMUL(N, a, b): Given odd N, and $a, b \in \mathbb{Z}$, find

- nontrivial divisor of N, or
- square root of one of a, b, or ab

WEAKFACROOT(N, a, b): Given odd N, and a, b s.t. $\left(\frac{a}{N}\right) = 1$ and $\left(\frac{b}{N}\right) = -1$, find

- nontrivial divisor of N, or
- square root of a

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusion

Citations

Factoring \leq^* FacRoot

Akash Kumar, Yuriko Nishijima

Factoring \leq^* FacRoot

If N is even or a perfect power, then factoring is easy; assume $N = \prod_{i=1}^{k} p_i^{\alpha_i}$, with $k \ge 2$.

Overview

Definitions

Lemmas

Theorem

Conclusion

Citations

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusion

Citations

Factoring \leq^* FacRoot

If N is even or a perfect power, then factoring is easy; assume $N = \prod_{i=1}^{k} p_i^{\alpha_i}$, with $k \ge 2$.

Choose random $a \in \{1, ..., N-1\}$. If $gcd(a, N) \neq 1$, return the gcd as the factor. Else, feed (N, a) to the FACROOT oracle.

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusio

Citations

Factoring \leq^* FacRoot

If N is even or a perfect power, then factoring is easy; assume $N = \prod_{i=1}^{k} p_i^{\alpha_i}$, with $k \ge 2$.

Choose random $a \in \{1, ..., N-1\}$. If $gcd(a, N) \neq 1$, return the gcd as the factor. Else, feed (N, a) to the FACROOT oracle. We want *a* to satisfy $\left(\frac{a}{N}\right) = 1$ and *a* not a q.r. so that the FACROOT oracle is forced to return a factor of *N*.

Akash Kumar, Yuriko Nishijima

- Overview Definitions
- Theorem
- Conclusio
- Citations

Factoring \leq^* FacRoot

If N is even or a perfect power, then factoring is easy; assume $N = \prod_{i=1}^{k} p_i^{\alpha_i}$, with $k \ge 2$.

Choose random $a \in \{1, ..., N-1\}$. If $gcd(a, N) \neq 1$, return the gcd as the factor. Else, feed (N, a) to the FACROOT oracle. We want a to satisfy $\left(\frac{a}{N}\right) = 1$ and a not a q.r. so that the FACROOT oracle is forced to return a factor of N.

First, what's the probability that $\left(\frac{a}{N}\right) = 1$? Among $a \in \mathbb{Z}_{N}^{*}$, there's a half chance that $\left(\frac{a}{N}\right) = 1$. In fact, we can improve from 1/2 to 1 with the following trick: instead of randomly choosing a, now randomly choose $a, b \in [N - 1]$. Among $c \in \{a, b, ab\}$, take the first so that $\left(\frac{c}{N}\right) = 1$. Now you are guaranteed to find an element with Jacobi Symbol equal to 1 because $\left(\frac{a}{N}\right) = \left(\frac{b}{N}\right) = -1 \implies \left(\frac{ab}{N}\right) = 1$.

Akash Kumar, Yuriko Nishijima

- Overview Definitions
- Theorem
- Conclusio
- Citations

Factoring \leq^* FacRoot

If N is even or a perfect power, then factoring is easy; assume $N = \prod_{i=1}^{k} p_i^{\alpha_i}$, with $k \ge 2$.

Choose random $a \in \{1, ..., N-1\}$. If $gcd(a, N) \neq 1$, return the gcd as the factor. Else, feed (N, a) to the FACROOT oracle. We want a to satisfy $\left(\frac{a}{N}\right) = 1$ and a not a q.r. so that the FACROOT oracle is forced to return a factor of N.

First, what's the probability that $\left(\frac{a}{N}\right) = 1$? Among $a \in \mathbb{Z}_N^*$, there's a half chance that $\left(\frac{a}{N}\right) = 1$. In fact, we can improve from 1/2 to 1 with the following trick: instead of randomly choosing a, now randomly choose $a, b \in [N-1]$. Among $c \in \{a, b, ab\}$, take the first so that $\left(\frac{c}{N}\right) = 1$. Now you are guaranteed to find an element with Jacobi Symbol equal to 1 because $\left(\frac{a}{N}\right) = \left(\frac{b}{N}\right) = -1 \implies \left(\frac{ab}{N}\right) = 1$.

Next, what's the probability that a random residue $c \in [N-1]$ s.t. $\left(\frac{c}{N}\right) = 1$ is a quadratic residue? By the "Fact" from earlier, it's $\frac{1}{2^k}$. Hence, our success probability is $1 - \frac{1}{2^k} \ge \frac{1}{2}$.

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusio

Citations

FacRoot \leq^* WeakFacRoot

Recall that the input to FACROOT is (N, a), and the input to WEAKFACROOT is (N, a, b), so all we need to do is find b s.t. $\left(\frac{b}{N}\right) = -1$.

To do so, we pick a random $b \in [N-1]$, and this shall succeed with probability $\frac{1}{2}$.

By succeed, we mean

• $gcd(b, N) \neq 1$, so return that factor; or,

•
$$\left(\frac{b}{N}\right) = -1$$

Akash Kumar, Yuriko Nishijima

$\begin{aligned} & \text{WeakFacRoot} \leq \\ & \text{FacRootMul} \end{aligned}$

Overview

- Definitions
- Lemmas
- Theorem
- Conclusion
- Citations

Recall that WEAKFACROOT takes (N, a, b) as input, and so does FACROOTMUL. I claim that to solve WEAKFACROOT, one can simply pass the given input (N, a, b) to the FACROOTMUL oracle.

FACROOTMUL(N, a, b) could never return a square root of b or ab since $\left(\frac{b}{N}\right) = \left(\frac{ab}{N}\right) = -1$. Hence, the output of FACROOTMUL(N, a, b) works.

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem Conclusion

Citations

$FACROOTMUL \in PWPP$

We are given, as input, (N, a, b). If either a or b shares a factor with N, return it; so we assume gcd(a, N) = gcd(b, N) = 1. Consider the polytime-computable function $f : \{0, 1, 2\} \times \{1, \dots, \frac{N-1}{2}\} \rightarrow \{1, \dots, N-1\}$: $f(i, x) = \begin{cases} a_i x^2 \pmod{N} & \text{if } gcd(x, N) = 1\\ x & \text{otherwise} \end{cases}$

where $a_0 = 1$, $a_1 = a$, $a_2 = b$. The domain of f is 3/2 times larger than its codomain, so the WEAKPIGEON oracle gives us a collision: (i, x) and (j, y) s.t. f(i, x) = f(j, y) and $(i, x) \neq (j, y)$. Again, we assume gcd(x, N) = gcd(y, N) = 1, as otherwise we can factor N.

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusio

Citations

$FACROOTMUL \in PWPP$

With the collision, there are two cases to consider.

Case 1: i = j (good case) Then $f(i, x) = f(j, y) \implies x^2 \equiv y^2$. In addition, $x \not\equiv \pm y$ since $(i, x) \neq (j, y)$, which means that gcd(N, x - y) returns a nontrivial factor of N.

Case 2: i < j (cop out case) Then $f(i,x) = f(j,y) \implies (xy^{-1})^2 = a_j a_j^{-1}$. • $(xy^{-1})^2 = a_j^2$

Return xy^{-1}

- $(xy^{-1})^2 = b$ Return xy^{-1}
- $(xy^{-1})^2 = ba^{-1} \implies (axy^{-1})^2 = ab$ Return axy^{-1}

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusion

Citations

$\mathrm{Factoring} \in^* \mathsf{PWPP} \cap \mathsf{PPA}$

 $\texttt{Factoring} \leq^* \texttt{FacRoot} \leq^* \texttt{WeakFacRoot} \leq \texttt{FacRootMul} \in \texttt{PWPP}$

Via the chain of reductions above, we have shown that FACTORING is randomly reducible to WEAKPIGEON.

The paper additionally shows that FACTORING is randomly reducible to LONELY, i.e. $FACTORING \in PPA$.

Hence,

Factoring $\in^* \mathsf{PWPP} \cap \mathsf{PPA}$

Akash Kumar, Yuriko Nishijima

Citations

Overview

Definitions

Lemmas

Theorem

Conclusio

Citations

[1]
 [2]

Akash Kumar, Yuriko Nishijima

Overview

Definitions

Lemmas

Theorem

Conclusion

Citations

Joshua Buresh-Oppenheim.

On the TFNP complexity of factoring. 2006.

Emil Jerabek.

Integer factoring and modular square roots. 2015.