Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

On Search Complexity of Discrete Logarithm

Shouqiao Wang 1 , Hugo Bucquet 2

December, 2022

¹Columbia University, New York. shwang27@gsb.columbia.edu ²Columbia University, New York. hb2559@columbia.edu

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

- Overview
- Define INDEX
- INDEX lies in PPP
- INDEX is PPP-Hard
- Define DLOG
- DLOG is PWPP-hard
- DLOG lies i PWPP

Key Takeaways

References

What is discrete logarithm?

- Given set $S = \{1, 2, 3, 4, 5, 6\}$ and the binary operator *, we define a * b = c, if $c \equiv a * b \mod 7$.
- Suppose g = 3, we have

x	0	1	2	3	4	5
g×	1	3	2	6	4	5

• Then, given g, we can define the discrete logarithm

X	1	2	3	4	5	6
$\log x$	0	2	1	4	5	3

Shouqiao Wang, Hugo Bucquet

- Intuitive Examples
- Overview
- Define INDEX
- INDEX lies i PPP
- INDEX is PPP-Hard
- Define DLOG
- DLOG is PWPP-hard
- DLOG lies in PWPP

Key Takeaway:

References

Group and cyclic group

Definition: A group G is a non-empty set with a binary operation * that satisfies

- Clsoed: For $\forall a, b \in G$, $a * b \in G$
- Associativity: For $\forall a, b, c \in G$, (a * b) * c = a * (b * c)
- Identity: $\exists e \in G \text{ s.t. for } \forall a \in G, e * a = a * e = a$
- Inverse: For $\forall a \in G$, $\exists b \in G$ s.t. a * b = b * a = e

Definition: G is a finite cyclic group if

• G is a group

There exists generator g ∈ G, s.t. G = {e, g¹, · · · , gⁿ⁻¹}
 Note that Z^{*}_p = {1, 2, · · · , p − 1} is always a finite cyclic group, if p is a prime number.

From previous example, 3 is a generator of \mathbb{Z}_7^* .

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

A more general example

Given a cyclic group G, a generator g and a target $t \in G$, how to search $x \in \mathbb{Z}$ s.t. $t = g^x$?

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Given a cyclic group G, a generator g and a target $t \in G$, how to search $x \in \mathbb{Z}$ s.t. $t = g^x$?

A more general example

• Is this search problem in FNP? How to use polynomial time algorithm to calculate g^{x} ?

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Given a cyclic group G, a generator g and a target $t \in G$, how to search $x \in \mathbb{Z}$ s.t. $t = g^{x}$?

A more general example

- Is this search problem in FNP? How to use polynomial time algorithm to calculate g^{x} ?
- Is this search problem Total? How can we verify G is indeed a cyclic group or g is indeed a generator?

Why FNP?

On Search Complexity of Discrete Logarithm

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

Given a cyclic group G, a generator g and a target $t \in G$, how to search $x \in \mathbb{Z}$ s.t. $t = g^x$?

• Is this search problem in FNP?

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

Given a cyclic group G, a generator g and a target $t \in G$, how to search $x \in \mathbb{Z}$ s.t. $t = g^{x}$?

Why FNP?

• Is this search problem in FNP?

Naive algorithm takes exponential time to calculate g^{x} .

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaway:

References

Given a cyclic group G, a generator g and a target $t \in G$, how to search $x \in \mathbb{Z}$ s.t. $t = g^x$?

Why FNP?

• Is this search problem in FNP?

Naive algorithm takes exponential time to calculate g^{x} . Thanks to the "repeated squaring" algorithm, it is in FNP!

Algorithm 1 Computation of the *x*-th power of the generator $g \in [s]$ of a groupoid (\mathbb{G}, \star) of size $s \in \mathbb{N}$ induced by $f : \{0, 1\}^{2\lceil \log(s) \rceil} \to \{0, 1\}^{\lceil \log(s) \rceil}$ with identity $id \in [s]$.

```
1: procedure \mathcal{I}_{G}(x)
         (x_m,\ldots,x_1) \leftarrow \mathrm{bd}_0(x)
 2:
         r \leftarrow \mathrm{bd}(id)
 3:
 4.
         q \leftarrow \mathrm{bd}(q)
         for i from m to 1 do
 5:
           r \leftarrow f(r,r)
 6:
         if x_i = 1 then
 7:
                   r \leftarrow f(q, r)
 8:
              end if
 9:
         end for
10:
         return bc(r)
11:
12: end procedure
```

 (x_m,\cdots,x_1) is the binary expression of x, $f(\cdot,\cdot)$ stands for the binary operator *

```
e.g. How to calculate g^{10}?
```

Why total?

Logarithm Shouqiao Wang, Hugo Bucquet

On Search Complexity of

Discrete

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Given a cyclic group G, a generator g and a target $t \in G$, how to search $x \in \mathbb{Z}$ s.t. $t = g^x$?

• Is this search problem Total?

Why total?

Logarithm Shouqiao Wang, Hugo Bucquet

On Search Complexity of

Discrete

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Given a cyclic group G, a generator g and a target $t \in G$, how to search $x \in \mathbb{Z}$ s.t. $t = g^x$?

• Is this search problem Total?

Imagine we are dealing with Z_p^* and a corresponding generator g. It is easy for us to prove Z_p^* is a cyclic group, but how can we verify g is a true generator?

DLOG_p

On Search Complexity of Discrete Logarithm

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

Definition: The search problem $DLOG_p$ is defined via the following relation of instances and solutions: **Instance:** Distinct primes $p, p_1, \dots, p_n \in \mathbb{N}$, numbers $k_1, \dots, k_n \in \mathbb{N}$, and $g, y \in \mathbb{Z}_p^*$ such that **1** $p - 1 = \prod_{i=1}^n p_i^{k_i}$ **2** $g^{(p-1)/p_i} \neq 1$ for all $i \in \{1, \dots, n\}$ **Solution:** An $x \in \{0, \dots, p-2\}$ such that $g^x = y$

DLOG_p

On Search Complexity of Discrete Logarithm

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Definition: The search problem $DLOG_p$ is defined via the following relation of instances and solutions: **Instance:** Distinct primes $p, p_1, \dots, p_n \in \mathbb{N}$, numbers $k_1, \dots, k_n \in \mathbb{N}$, and $g, y \in \mathbb{Z}_p^*$ such that **1** $p - 1 = \prod_{i=1}^n p_i^{k_i}$ **2** $g^{(p-1)/p_i} \neq 1$ for all $i \in \{1, \dots, n\}$ **Solution:** An $x \in \{0, \dots, p-2\}$ such that $g^x = y$

Additionally providing the factorization of p - 1, we can verify whether g is indeed a generator. Why? [See next slide]

DLOG_p

On Search Complexity of Discrete Logarithm

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Definition: The search problem $DLOG_p$ is defined via the following relation of instances and solutions: **Instance:** Distinct primes $p, p_1, \dots, p_n \in \mathbb{N}$, numbers $k_1, \dots, k_n \in \mathbb{N}$, and $g, y \in \mathbb{Z}_p^*$ such that **1** $p - 1 = \prod_{i=1}^n p_i^{k_i}$ **2** $g^{(p-1)/p_i} \neq 1$ for all $i \in \{1, \dots, n\}$ **Solution:** An $x \in \{0, \dots, p-2\}$ such that $g^x = y$

Additionally providing the factorization of p - 1, we can verify whether g is indeed a generator. Why? [See next slide]

Theorem: $DLOG_p \in TFUP$, i.e., subclass of TFNP with unique solution for every instance.

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies ir PWPP

Key Takeaways

References

Proof of generator for \mathbb{Z}_p^* **Statement:** For primes $p, p_1, \dots, p_n \in \mathbb{N}$, if $p - 1 = \prod_{i=1}^n p_i^{k_i}$

2
$$g^{(p-1)/p_i} \neq 1$$
 for all $i \in \{1, \cdots, n\}$

then g is a generator for \mathbb{Z}_p^* .

Lemma 1: For $\forall g \in \{1, \dots, p-1\}$, $g^{p-1} = 1$. This is the celebrated Fermat's little theorem. **Lemma 2:** For $a, b \in \mathbb{Z}^+$, if $g^a = g^b = 1$, then $g^d = 1$, where d = gcd(a, b). This can be proved by the Bézout's lemma.

Proof: If g is not a generator, then $\exists k < p-1$ s.t. $g^k = 1$

- Suppose d = gcd(k, p-1), we have $g^d = 1$
- \exists prime p_i s.t. $p_i | \frac{p-1}{d}$, we suppose $p 1 = tdp_i$
- Then $g^{(p-1)/p_i} = (g^d)^t = 1$. Contradiction!

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

What questions do we care about?

Intuition: The discrete logarithm problem is very important in cryptography. We also care about discrete logarithm for other groups, not only for Z_p^* .

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

What questions do we care about?

Intuition: The discrete logarithm problem is very important in cryptography. We also care about discrete logarithm for other groups, not only for Z_p^* .

Question: How can we form a TFNP problem just using a set G and a binary operator $f(\cdot, \cdot)$, without assuming any properties of G and $f(\cdot, \cdot)$ in advance?

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

What questions do we care about?

Intuition: The discrete logarithm problem is very important in cryptography. We also care about discrete logarithm for other groups, not only for Z_p^* .

Question: How can we form a TFNP problem just using a set G and a binary operator $f(\cdot, \cdot)$, without assuming any properties of G and $f(\cdot, \cdot)$ in advance?

Main Issue: Even for a simple cyclic group Z_p^* , if we only provide the set *G* and the binary operator *, we do not know how to verify a given generator *g* efficiently.

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

What questions do we care about?

Intuition: The discrete logarithm problem is very important in cryptography. We also care about discrete logarithm for other groups, not only for Z_p^* .

Question: How can we form a TFNP problem just using a set G and a binary operator $f(\cdot, \cdot)$, without assuming any properties of G and $f(\cdot, \cdot)$ in advance?

Main Issue: Even for a simple cyclic group Z_p^* , if we only provide the set *G* and the binary operator *, we do not know how to verify a given generator *g* efficiently.

Rough Idea: We can add more types of solutions to make the search problem total.

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

This paper [1] introduces two search problems for a general set G with a general binary operator $f(\cdot, \cdot)$ — INDEX and DLOG

Overview

For INDEX and DLOG problems, we are given

- Set $G = [s] = \{0, 1, 2, \cdots, s-1\}$, where $s \ge 2$
- Boolean circuit $f: \{0,1\}^{\log(s)} \times \{0,1\}^{\log(s)} \rightarrow \{0,1\}^{\log(s)}$
- Element $id \in [s]$, $g \in [s]$ and $t \in [s]$

Solution for INDEX:

- An element $x \in G$, s.t. $g^x = t$
- Some violation showing (G, f) cannot represents a group
- Some violation showing g is not a generator

Solution for DLOG contains all the cases of INDEX's solution, but adding two addional violations showing (G, f) cannot represents a group

Overview

On Search Complexity of Discrete Logarithm

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Theorem: INDEX is PPP-complete

• PIGEON \leq INDEX \leq PIGEON

Theorem: DLOG is PWPP-complete

- Step 1: DLOG is PWPP-hard
 - WEAK-PIGEON \leq DOVE \leq DLOG
- Step 2: DLOG lies in PWPP
 - $\mathsf{DLOG} \leq \mathsf{GEN}\text{-}\mathsf{CLAW} \leq \mathsf{WEAK}\text{-}\mathsf{PIGEON}$

$$\label{eq:WEAK-PIGEON} \begin{split} \text{WEAK-PIGEON} &\leq \text{DLOG} \leq \text{GEN-CLAW} \leq \text{WEAK-PIGEON} \\ \text{They are all PWPP-complete} \end{split}$$

Theorem: $DLOG_p \leq DLOG = PWPP$ -complete Conjecture: $DLOG_p$ cannot be PWPP-complete

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaway

References

Definition of INDEX

We do not assume any property of the following variables

- Set $G = [s] = \{0, 1, 2, \cdots, s 1\}$, where $s \ge 2$
- Boolean circuit $f : \{0,1\}^{l} \times \{0,1\}^{l}$, where $l = \lceil \log(s) \rceil$
- Element $id \in [s]$, $g \in [s]$ and $t \in [s]$

Definition: The search problem INDEX is defined via the following relation

Instance: A tuple (s, f, id, g, t)**Solution:** One of the following:

1 $x \in [s]$, s.t. $I_G(x) = t$ **2** $x, y \in [s]$, s.t. $f(x, y) \ge s$ **3** $x, y \in [s] \ x \neq y$, s.t. $I_G(x) = I_G(y)$

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaway

References

Definition of INDEX

We do not assume any property of the following variables

- Set $G = [s] = \{0, 1, 2, \cdots, s 1\}$, where $s \ge 2$
- Boolean circuit $f : \{0,1\}^{l} \times \{0,1\}^{l}$, where $l = \lceil \log(s) \rceil$
- Element $id \in [s]$, $g \in [s]$ and $t \in [s]$

Definition: The search problem INDEX is defined via the following relation

Instance: A tuple (s, f, id, g, t)**Solution:** One of the following:

1 $x \in [s]$, s.t. $I_G(x) = t$ **2** $x, y \in [s]$, s.t. $f(x, y) \ge s$ **3** $x, y \in [s] \ x \neq y$, s.t. $I_G(x) = I_G(y)$

How to interpret these cases? Why total?

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Algorithm 1 Computation of the x-th power of the generator $g \in [s]$ of a groupoid (\mathbb{G}, \star) of size $s \in \mathbb{N}$ induced by $f: \{0, 1\}^{2\lceil \log(s) \rceil} \to \{0, 1\}^{\lceil \log(s) \rceil}$ with identity $id \in [s]$.

What is $I_G(x)$

1: procedure $\mathcal{I}_{\mathbf{G}}(x)$ $\mathbf{2}$: $(x_m,\ldots,x_1) \leftarrow \mathrm{bd}_0(x)$ $r \leftarrow \mathrm{bd}(id)$ 3. $a \leftarrow \mathrm{bd}(a)$ 4. for i from m to 1 do 5 $r \leftarrow f(r, r)$ 6. if $x_i = 1$ then 7: $r \leftarrow f(q, r)$ 8: end if 9. end for 10. **return** bc(r)11: 12: end procedure

To better understand $I_G(x)$, we show some properties of it:

• Suppose $f_0(r) = f(r, r)$ and $f_1(r) = f(g, r)$, the function $I_G(x)$ can correspond to an iterated composition of f_0 and f_1 evaluated on *id*

• e.g., $I_G(3) = I_G((101)_2) = f_1 \circ f_0 \circ f_0 \circ f_1 \circ f_0(id)$

We also use "repeated squaring" algorithm to define $I_G(x)$, but use f_0 and f_1 for squaring and multiplication by generator respectively.

Shouqiao Wang, Hugo Bucquet

Intuitive

Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

INDEX lies in PPP

Theorem: INDEX \leq PIGEON

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

INDEX lies in PPP

Theorem: INDEX \leq PIGEON

Let G = (s, f, id, g, t) be an arbitrary instance of INDEX. We construct a circuit $C : \{0, 1\}^{I} \rightarrow \{0, 1\}^{I}$ s.t. any solution to the PIGEON instance C gives a solution to INDEX instance G.

We construct C as follows

$$C(x) = \begin{cases} I_G(x) - t \mod s & \text{if } x \leq s, \\ x & \text{otherwise.} \end{cases}$$

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies ir PWPP

Key Takeaways

References

INDEX lies in PPP

Theorem: INDEX \leq PIGEON

Let G = (s, f, id, g, t) be an arbitrary instance of INDEX. We construct a circuit $C : \{0, 1\}^{I} \rightarrow \{0, 1\}^{I}$ s.t. any solution to the PIGEON instance C gives a solution to INDEX instance G.

We construct C as follows

$$C(x) = \begin{cases} I_G(x) - t \mod s & \text{if } x \leq s, \\ x & \text{otherwise.} \end{cases}$$

Why it works?

- Given a preimage of 0, we can either find a solution of type 1, i.e., x ∈ [s] s.t. I_G(x) = t, or I_G(x) > s, which gives a solution of type 2
- Given a collision, we can either find a solution of type 3, or a solution of type 2 (either I_G(x) > s or I_G(y) > s)

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies i PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Theorem: $PIGEON \leq INDEX$ (Too complicated, skip)

INDEX is PPP-Hard

Shouqiao Wang, Hugo Bucquet

- Intuitive Examples
- Overview
- Define INDEX
- INDEX lies in PPP
- INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Definition of DLOG

Definition: The search problem DLOG is defined via the following relation of instances and solutions **Instance:** A tuple (s, f, id, g, t)**Solution:** One of the following: **1** $x \in [s]$, s.t. $I_G(x) = t$ **2** $x, y \in [s]$, s.t. f(x, y) > s**3** $x, y \in [s] \ x \neq y$, s.t. $I_G(x) = I_G(y)$ **4** $x, y \in [s] \ x \neq y$, s.t. $f(t, I_G(x)) = f(t, I_G(y))$ **5** $x, y \in [s]$, s.t. $I_G(x) = f(t, I_G(y)), I_G(x - y \mod s) \neq t$ Properties of DLOG:

- Type 1,2,3 of solutions are sufficient to guarantee totality
- Type 4,5 of solutions make DLOG to lie in the class of PWPP and are crucial for correctness of the reduction from DLOG to WEAK-PIGEON

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

Alternative violation in DLOG

The last type of solution

$$x, y \in [s], s.t.$$
 $I_G(x) = f(t, I_G(y)), I_G(x - y \mod s) \neq t$

implies the violation of associativity. Why?

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Alternative violation in DLOG

The last type of solution

 $x, y \in [s], s.t.$ $I_G(x) = f(t, I_G(y)), I_G(x - y \mod s) \neq t$

implies the violation of associativity. Why?

One could think about changing it to finding

$$x, y, z \in [s], s.t. f(x, f(y, z)) \neq f(f(x, y), z)$$

However, our proof of PWPP-hardness would fail for such alternative version of DLOG.

Open question: Does there exist an alternative version of DLOG, which is PWPP-complete?

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

Definition of DOVE

Definition: The search problem DOVE is defined via the following relation **Instance:** A Boolean circuit $C : \{0, 1\}^n \rightarrow \{0, 1\}^n$

Solution: One of the following

1 $u \in \{0,1\}^n$, s.t. C(u) = 0

2
$$u \in \{0,1\}^n$$
, s.t. $C(u) = 1$

- **3** $u, v \in \{0, 1\}^n$ $u \neq v$, s.t. C(u) = C(v)
- 4 $u, v \in \{0, 1\}^n \ u \neq v$, s.t. $C(u) = C(v) \oplus 1$

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Definition of DOVE

Definition: The search problem DOVE is defined via the following relation Instance: A Backar sizewit $C : \{0, 1\}^n \to \{0, 1\}^n$

Instance: A Boolean circuit $C : \{0, 1\}^n \rightarrow \{0, 1\}^n$ **Solution:** One of the following

1
$$u \in \{0,1\}^n$$
, s.t. $C(u) = 0$
2 $u \in \{0,1\}^n$, s.t. $C(u) = 1$
3 $u, v \in \{0,1\}^n$ $u \neq v$, s.t. $C(u) = C(v)$
4 $u, v \in \{0,1\}^n$ $u \neq v$, s.t. $C(u) = C(v) \oplus 1$

Why total?

• Type 1 and 3 can guarantee the totality

 $DOVE(=PWPP-Complete) \le PIGEON.$

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

DOVE is reducible to DLOG

Theroem: DOVE <= DLOG

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Examples

Overview

Define INDEX

INDEX lies i PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

DOVE is reducible to DLOG

Theroem: DOVE <= DLOG

Let $C : \{0,1\}^n \to \{0,1\}^n$ be an arbitrary instance of DOVE. We construct an instance G = (s, f, id, g, t) of DLOG s.t. any solution to G provides a solution to C.

Shouqiao Wang, Hugo Bucquet

- Intuitive Examples
- Overview
- Define INDEX
- INDEX lies i PPP
- INDEX is PPP-Hard
- Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

DOVE is reducible to DLOG

Theroem: DOVE <= DLOG

Let $C : \{0,1\}^n \to \{0,1\}^n$ be an arbitrary instance of DOVE. We construct an instance G = (s, f, id, g, t) of DLOG s.t. any solution to G provides a solution to C.

We construct (s, f, id, g, t) as follows

•
$$s = 2^n, g = 0, id = 1, t = 1$$

• The binary operator

$$f(x,y) = \begin{cases} C(x) & \text{if } x = y, \\ C(y \oplus 1) & \text{if } x = g \text{ and } y \neq g, \\ x \oplus y & \text{otherwise.} \end{cases}$$

Show any solution to this DLOG gives a solution to the instance C of DOVE. (Too complicated, skip)

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies i PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

WEAK-PIGEON is reducible to DOVE

Theorem: WEAK-PIGEON <= DOVE

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

WEAK-PIGEON is reducible to DOVE

Theorem: WEAK-PIGEON <= DOVE

For any arbitrary instance $C: \{0,1\}^n \to \{0,1\}^{n-1}$, we construct a circuit $V: \{0,1\}^{2n} \to \{0,1\}^{2n}$

$$V(x_1, \cdots, x_{2n}) = (C(x_1, \cdots, x_n), C(x_{n+1}, \cdots, x_{2n}), 1, 1)$$

Why any solution to V of DOVE gives a solution to the instance C of WEAK-PIGEON?

- We can never find a solution of type 1, 2 or 4, since the last two digits of V(x₁, · · · , x_{2n}) are both 1
- Given a solution of type 3, which is a collision, we can get $C(x_{[1:n]}) = C(y_{[1:n]})$ and $C(x_{[n+1:2n]}) = C(y_{[n+1:2n]})$
- There is either x_[1:n] ≠ y_[1:n] or x_[n+1:2n] ≠ y_[n+1:2n], which is a collision for WEAK-PIGEON

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Definition of CLAW

Definition: The search problem CLAW is defined via the following relation

Instance: A pair of Boolean circuits $h_0, h_1 : \{0, 1\}^n \to \{0, 1\}^n$ **Solution:** One of the following

1	$u, v \in \{0, 1\}^n$, s.	t. $h_0(u) = h_1(v)$
---	----------------------------	----------------------

2
$$u, v \in \{0, 1\}^n$$
 $u \neq v$, s.t. $h_0(u) = h_0(v)$

3
$$u,v \in \{0,1\}^n \; u
eq v$$
, s.t. $h_1(u) = h_1(v)$

Shouqiao Wang, Hugo Bucquet

- Intuitive Examples
- Overview
- Define INDEX
- INDEX lies in PPP
- INDEX is PPP-Hard
- Define DLOG
- DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Definition of CLAW

Definition: The search problem CLAW is defined via the following relation

Instance: A pair of Boolean circuits $h_0, h_1 : \{0, 1\}^n \rightarrow \{0, 1\}^n$ **Solution:** One of the following

1 $u, v \in \{0, 1\}^n$, s.t. $h_0(u) = h_1(v)$

2
$$u, v \in \{0,1\}^n \ u \neq v$$
, s.t. $h_0(u) = h_0(v)$

3
$$u, v \in \{0, 1\}^n$$
 $u \neq v$, s.t. $h_1(u) = h_1(v)$

Can we use CLAW as an intermediate problem to prove DLOG \in PWPP, i.e., prove DLOG \leq CLAW \leq WEAK-PIGEON? It is very hard for us to prove DLOG \leq CLAW. We choose GEN-CLAW as the intermediate problem!

Shouqiao Wang, Hugo Bucquet

- Intuitive Examples
- Overview
- Define INDEX
- INDEX lies in PPP
- INDEX is PPP-Hard
- Define DLOG
- DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Definition of GEN-CLAW

Definition: The search problem GEN-CLAW is defined via the following relation **Instance:** A pair of Boolean circuits $h_0, h_1 : \{0, 1\}^n \to \{0, 1\}^n$ and $s \in \mathbb{Z}^+$, s.t. $1 \leq s < 2^n$ **Solution:** One of the following 1 $u, v \in \{0, 1\}^n$, s.t. $u < s v < s h_0(u) = h_1(v)$ **2** $u, v \in \{0, 1\}^n$ $u \neq v$, s.t. $h_0(u) = h_0(v)$ **3** $u, v \in \{0, 1\}^n$ $u \neq v$, s.t. $h_1(u) = h_1(v)$ 4 $u \in \{0, 1\}^n$, s.t. $u < s h_0(u) > s$ **5** $u \in \{0, 1\}^n$, s.t. $u < s h_1(u) > s$

Shouqiao Wang, Hugo Bucquet

- Intuitive Examples
- Overview
- Define INDEX
- INDEX lies in PPP
- INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Definition of GEN-CLAW

Definition: The search problem GEN-CLAW is defined via the following relation **Instance:** A pair of Boolean circuits $h_0, h_1 : \{0, 1\}^n \to \{0, 1\}^n$ and $s \in \mathbb{Z}^+$, s.t. $1 \leq s < 2^n$ **Solution:** One of the following 1 $u, v \in \{0, 1\}^n$, s.t. $u < s v < s h_0(u) = h_1(v)$ **2** $u, v \in \{0, 1\}^n$ $u \neq v$, s.t. $h_0(u) = h_0(v)$ **3** $u, v \in \{0, 1\}^n$ $u \neq v$, s.t. $h_1(u) = h_1(v)$ 4 $u \in \{0, 1\}^n$, s.t. $u < s h_0(u) > s$ **5** $u \in \{0, 1\}^n$, s.t. $u < s h_1(u) > s$

Why proving $DLOG \leq GEN-CLAW$ is easier? The possible solutions to an instance of DLOG may not from $[2^n]$ but must lie in [s]. DLOG is more related to GEN-CLAW!

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

DLOG is reducible to GEN-CLAW

Theorem: DLOG <= GEN-CLAW

Shouqiao Wang, Hugo Bucquet

- Intuitive Examples
- Overview
- Define INDEX
- INDEX lies in PPP
- INDEX is PPP-Hard
- Define DLOG
- DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

DLOG is reducible to GEN-CLAW

Theorem: DLOG ≤ GEN-CLAW

For any arbitrary G = (s, g, id, f, t) of DLOG, let $n = \lceil \log(s) \rceil$. We construct

• $h_0: \{0,1\}^n \to \{0,1\}^n$

$$h_0(u) = \begin{cases} I_G(u) & \text{if } u < s, \\ u & \text{otherwise,} \end{cases}$$

•
$$h_1: \{0,1\}^n \to \{0,1\}$$

$$h_1(u) = egin{cases} f(t, I_G(u)) & ext{if } u < s, \ u & ext{otherwise.} \end{cases}$$

Show any solution to this instance of GEN-CLAW gives a solution to instance G of DLOG. (skip)

}*n*

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

GEN-CLAW is reducible to WEAK-PIGEON

Theorem: GEN-CLAW <= WEAK-PIGEON

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

GEN-CLAW is reducible to WEAK-PIGEON

Theorem: GEN-CLAW < WEAK-PIGEON

For any arbitrary instance (h_0, h_1, s) of GEN-CLAW, we construct a circuit $C : \{0, 1\}^{n+1} \rightarrow \{0, 1\}^n$ as follows

$$\mathcal{C}(x) = h_{x_0} \circ h_{x_1} \circ \cdots \circ h_{x_n}(0),$$

where $x = (x_0, x_1, \cdots, x_n)_2$.

Show any solution to this instance C of WEAK-PIGEON gives a solution to instance (h_0, h_1, s) of GEN-CLAW. (skip)

Shouqiao Wang, Hugo Bucquet

Intuitive

Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

CLAW is PWPP-complete Theorem: WEAK-PIGEON<CLAW

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

CLAW is PWPP-complete

Theorem: WEAK-PIGEON \leq CLAW

For any instance of WEAK-PIGEON given by an arbitrary circuit $C : \{0,1\}^n \to \{0,1\}^{n-1}$, we construct an instance of CLAW as follows.

$$h_0(x)=C(x)0$$

and

$$h_1(x)=C(x)1$$

Why it works?

- It is impossible to find a solution of type 1
- Either a solution of type 2 or type 3 implies a collision for the WEAK-PIGEON problem

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

CLAW is PWPP-complete

Theorem: WEAK-PIGEON \leq CLAW

For any instance of WEAK-PIGEON given by an arbitrary circuit $C : \{0,1\}^n \to \{0,1\}^{n-1}$, we construct an instance of CLAW as follows.

$$h_0(x)=C(x)0$$

and

$$h_1(x)=C(x)\mathbf{1}$$

Why it works?

- It is impossible to find a solution of type 1
- Either a solution of type 2 or type 3 implies a collision for the WEAK-PIGEON problem

It is obvious that CLAW \leq GEN-CLAW, and we already have GEN-CLAW is PWPP-complete. Hence, CLAW lies in PWPP.

Shouqiao Wang, Hugo Bucquet

Intuitive Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies in PWPP

Key Takeaways

References

Key Takeaways

Theorem: INDEX is PPP-complete PIGEON \leq INDEX \leq PIGEON

Theorem: DLOG is PWPP-complete WEAK-PIGEON \leq DOVE \leq DLOG \leq GEN-CLAW \leq WEAK-PIGEON DLOG, DOVE, GEN-CLAW, CLAW are all PWPP-complete.

Theorem: $DLOG_p \leq DLOG = PWPP$ -complete Conjecture: $DLOG_p$ cannot be PWPP-complete

Open Question: Does there exist an alternative version of DLOG, which is PWPP-complete?

Shouqiao Wang, Hugo Bucquet

Intuitive

Examples

Overview

Define INDEX

INDEX lies in PPP

INDEX is PPP-Hard

Define DLOG

DLOG is PWPP-hard

DLOG lies i PWPP

Key Takeaways

References

Pavel Hubáček and Jan Václavek. On search complexity of discrete logarithm. *arXiv preprint arXiv:2107.02617*, 2021.