
On the Journey
from NP

hardness to
TFNP

Akshat Yaparla,
Mark Chen

1/18

On the Journey from NP hardness to TFNP

Akshat Yaparla1

Mark Chen2

8 February 2024

1Presenter, Columbia University, New York. ay2544@columbia.edu
2Supporter, Columbia University, New York. yc3879@columbia.edu

Akshat Yaparla, Mark Chen On the Journey from NP hardness to TFNP 8 February 2024 1 / 18



On the Journey
from NP

hardness to
TFNP

Akshat Yaparla,
Mark Chen

2/18

TFNP in Impagliazzo’s Worlds

This paper discusses the effect of average-case hardness in
NP on average-case hardness (!!) of TFNP.

Average-case NP hardness puts us in at least Pessiland.

However, theorems in this paper do not depend on the
existence of one-way functions.

This puts us in an intermediate area between Pessiland and
Minicrypt, where additional assumptions such as NW
assumptions were made on top of Pessiland assumptions but
such assumptions are independent from OWFs.
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Theorem 1

Theorem 1. [1] If there exists a hard-on-average language
in NP, then there exists a hard-on-average problem in
nonuniform TFNP (i.e. TFNP/poly).

What does “nonuniform TFNP (i.e. TFNP/poly)” mean?
It means that the verifier for this problem is allowed to run a
different algorithm for each input length (or get advice
depending on the input length).
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Assumptions

Here, we summarize the assumptions and explain how they are
related:

(Theorem 1 Assumption - Pessiland): Hard-on-average
language exists in NP.

(Assumption 1 - Not Quite Minicrypt): There exists

function with deterministic time complexity 2O(n) and Π2

circuit complexity 2ω(n) (NW assumptions).

(Assumption 2 - Minicrypt): Injective OWF (iOWF) and
non-interactive witness-indistinguishable proof systems
(Zaps) exist.

* More information on these primitives and assumptions is in the
background document we prepared (and in the paper). We will
focus on Theorem 1.

Akshat Yaparla, Mark Chen On the Journey from NP hardness to TFNP 8 February 2024 4 / 18
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Assumptions

(Theorem 1 Assumption + Assumption 1)
=⇒ Corollary. There exists a hard-on-average language in
uniform TFNP.

(Theorem 1 Assumption + Assumption 1&2)
=⇒ Theorem 3. There exists a hard-on-average problem
in TFNP such that any instance has at most two solutions.

* More information on these primitives and assumptions is in the
background document we prepared (and in the paper). We will
focus on Theorem 1.
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Diagram of Results

Figure: Diagram of results in the paper.
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Average Case Complexity

Definition. A language L is said to be hard-on-average for NP
over distribution D(1n) ∈ {0, 1}n for any probabilistic
polynomial time algorithm A, there exists a negligible function
ϵ(·) such that for all large enough n,

PrA,x←Dn(r)[A(x) = L(x)] ≤ 1

2
+ ϵ(n)

If Dn is a uniform distribution, then we simply state L as
being hard-on-average for NP.

Otherwise, we must specify that L is hard-on-average for
nonuniform NP.

Akshat Yaparla, Mark Chen On the Journey from NP hardness to TFNP 8 February 2024 7 / 18
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Proof of Theorem 1 - What and Where is
Non-uniformity

Before we dive into the proof, it is critical to note the difference
between two kinds of non-uniformity.

(i) (Language L or relation R) Nonuniformity means that the
algorithms are nonuniform. For example, in circuit
complexity, different algorithms may be run on input strings
of different lengths (that is, the same algorithm is run on
two strings of the same length; different algorithms may be
run on two strings of different lengths).
Notation: D(1n)→ instance of L / R of length n.

(ii) (Verifier) Nonuniformity means the distribution of witness
strings are nonuniform.
Notation: Dn(1

n) ≡ Dn(1
n,Sn)→ y ∈ {0, 1}n.

Akshat Yaparla, Mark Chen On the Journey from NP hardness to TFNP 8 February 2024 8 / 18
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Proof of Theorem 1

We want to show for a fixed input n that any hard problem
L over distribution D also implies a hard distributional
search problem, corresponding to FNP.

Then, we extend this over to total problems to prove
hard-on-average for nonuniform TFNP.
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Proof of Theorem 1

Construct a relation RL that is the corresponding search problem
for a hard language L ∈ NP.

First, pick an x ← D(1n) in order to find a w such that
RL(x ,w) = 1 is hard.

Let p(·) be a polynomial such that
Prx←D(1n)[L(x) = 1] > p(n). Otherwise, a “no” algorithm
could distinguish L and contradict D being a hard
distribution.

Define a set of k = n2 · p(n) strings enumerated
si ∈ {0, 1}n. Then, the problem Ls1...sk under a new uniform
distribution D′ is defined by

Rs1...sk (r ,w) =
∨
i∈[k]

RL(xi ,w), x ← D(1n)(r ⊕ si )

Akshat Yaparla, Mark Chen On the Journey from NP hardness to TFNP 8 February 2024 10 / 18
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Proof of Theorem 1

Lemma. Let (L,D) be a hard distributional search problem.
Let (L′,D′) be a distributional serach problem related to (L,D)
that satisfies the following conditions:

1 L′ is an “OR” form, meaning that there exists efficiently
computable functions f1, . . . , fk such that
RL′(x

′,w) =
∨

i∈[k] RL(fi (x
′),w) where k is some

polynomially bounded function of n.

2 For every i ∈ [k], the marginal distribution of fi (x
′) under

x ′ ← D′ is identical to the distribution of x ← D(1n).
3 For any fixed instance x∗ ← D′(1n) conditioned on

fi (x
′) = x∗ is efficiently samplable (given r).

Akshat Yaparla, Mark Chen On the Journey from NP hardness to TFNP 8 February 2024 11 / 18
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Proof of Theorem 1

Proof Sketch. Just want to follow a reduction by reducing the
original distributional search problem (L,D) to the new problem,
implying the new problem (L′,D′) is also a hard distributional
search problem.

Note that our problem (Ls1,...,sk ,D′) satisfies the conditions
of the previous lemma.

Akshat Yaparla, Mark Chen On the Journey from NP hardness to TFNP 8 February 2024 12 / 18
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Proof of Theorem 1

We also want Ls1,...,sk to be a total language to satisfy hardness
for nonuniform TFNP. That is,

∀r ∈ {0, 1}n : Ls1,...,sk (r) = 1.

The authors claim that

Prs1,...,sk [Ls1,...,sk is total] ≥
3

4

Akshat Yaparla, Mark Chen On the Journey from NP hardness to TFNP 8 February 2024 13 / 18
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Proof of Theorem 1

Proof. Fix any string r . Picking an s at random yields

Prs←{0,1}kn,x←D(1n;r⊕s)[L(x) = 1] ≥ 1/p(n),

since for any fixed r , the string r ⊕ s is chosen at uniformly
random. Now, utilize that for any si , the event is independent,
and it holds that for any fixed r and k = n2 · p(n),

Prs←{0,1}kn,x←D(1n;r⊕s)[∀i : L(xi ) = 0] ≤ (1− 1/p(n))k ≤ 2−n
2
,

Union bounding over all r ∈ {0, 1}n yields

Prs←{0,1}kn [Lsi is not total] ≤ 2−n
2 · 2n ≤ 1/4.

Finishing the proof.

Akshat Yaparla, Mark Chen On the Journey from NP hardness to TFNP 8 February 2024 14 / 18
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Proof of Theorem 1

For any n, we fix k strings non-uniformly to get a total
Ls1,...,sk to obtain language L∗.

This is hard-on-average search problem under uniform
distribution D∗.

This problem is also total: for any n, every r ∈ {0, 1}n must
have a solution since we chose a total Ls1,...,sk .
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App.I - NW PRGs

Definition (Nisan-Wigderson (NW) PRGs). A function
G : {0, 1}d(n) → {0, 1}n is an NW-type PRG against circuits of
size t(n) if

(i) It is computable in time 2O(d(n)),

(ii) Any circuit of size at most t(n) distinguishes U ← {0, 1}n
from G (s), where s ← {0, 1}d(n), with advantage at most
1/t(n).
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App.II - Cryptographic vs Complexity Theor. PRGs

Both stem out of a common definition. A PRG
G : {0, 1}s(n) → {0, 1}n is a length expanding function such that
for a negligible function ϵ(·) and for any probabilistic polynomial
time algorithm A,∣∣PrA[A(Un) = 1]− PrA[A(G (Us(n))) = 1]

∣∣ ≤ ϵ(n)

We continue discussing how the two are different on the next
slide.
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App.II - Cryptographic vs Complexity Theor. PRGs

It is unknown if cryptographic PRGs are stronger than the
complexity theoretic PRGs, or the other way around, because of
the followng two degrees of freedoms.

(Stretch) Recall s(n) ≤ n. If s(n) = log(n), then the
codomain is exponentially “stretched,” which makes it
harder to cheat adversaries. In comparison, s(n) = n is an
easier requirement. Complexity PRGs have larger stretches.

(Adversaries Safe Against) How complex of a circuit does
the adversary need to at least be to differentiate the PRG
from uniform distribution.
Cryptographic PRGs are safe against harder adversaries.
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Pavel Hubáček, Moni Naor, and Eylon Yogev.
The journey from np to tfnp hardness.
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