Is it Easier to Prove Theorems that are Guaranteed to be True?

Rafael Pass & Muthuramakrishnan Venkitasubramaniam

Presented by Yizhi Huang & Jiaqian Li

2024-02-15

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><1/27

NO.

<ロト < 回 > < 直 > < 直 > < 直 > < 三 > < 三 > 三 の < ぐ 2/27

TFNP is hard on average in Pessiland.*

TFNP is hard on average in Pessiland.* That is, if **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average. **TFNP** is hard on average in Pessiland.*

That is, if **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

• In comparison, recall [Hubáček-Naor-Yogev'16] showed that if **NP** is hard on average, then **TFNP**/**poly** is hard on average.

TFNP is hard on average in Pessiland.*

That is, if **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

• In comparison, recall [Hubáček-Naor-Yogev'16] showed that if **NP** is hard on average, then **TFNP**/**poly** is hard on average.

Equivalently, if **NP** is hard on average, then either OWF exist, or **TFNP** is hard on average.

Interactive puzzles

Interactive puzzles

- **Completeness.** There exists an (inefficient) attacker $\mathcal{A}(1^n)$ that succeeds in making $\mathcal{C}(1^n)$ accept unless with negligible probability.
- Computational Soundness. There does not exists PPT attacker A^{*}(1ⁿ) that succeeds in making C(1ⁿ) accept with inverse polynomial probability.
- **Public Verifiability.** Whether $C(1^n)$ accepts is a deterministic poly-time function over the transcript $(m_1, p_1, \ldots, m_k, p_k)$.

Interactive puzzles

- **Completeness.** There exists an (inefficient) attacker $\mathcal{A}(1^n)$ that succeeds in making $\mathcal{C}(1^n)$ accept unless with negligible probability.
- Computational Soundness. There does not exists PPT attacker A^{*}(1ⁿ) that succeeds in making C(1ⁿ) accept with inverse polynomial probability.
- **Public Verifiability.** Whether $C(1^n)$ accepts is a deterministic poly-time function over the transcript $(m_1, p_1, \ldots, m_k, p_k)$.

Remark. Negligible can be changed to 1/3.

Interactive puzzles (optional properties)

• *k*-round if the attacker and the challenger send *k* messages in total (for example, the above diagram is 2*t*-round).

Interactive puzzles (optional properties)

- *k*-round if the attacker and the challenger send *k* messages in total (for example, the above diagram is 2*t*-round).
- **Public-coin** if the challenger only sends her randomness in each round. (The attacker can perform all computation instead.)

Interactive puzzles (optional properties)

- *k*-round if the attacker and the challenger send *k* messages in total (for example, the above diagram is 2*t*-round).
- **Public-coin** if the challenger only sends her randomness in each round. (The attacker can perform all computation instead.)
- Perfect completeness if there exists an attacker \mathcal{A} that always succeeds in making $\mathcal{C}(1^n)$ output 1.

(m, p) is an **NP** relation (because of public-verifiability).

• The existence of a 2-round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in **NP**.

- The existence of a 2-round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in **NP**.
- Public-coin iff the hard distribution is the uniform distribution.

- The existence of a 2-round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in **NP**.
- Public-coin iff the hard distribution is the uniform distribution.
- Perfect-completeness iff the problem is *promise-true*.
 (Promise-true here means we restrict the problem the instances that have a solution, but does not mean the search problem is total.)

- The existence of a 2-round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in **NP**.
- Public-coin iff the hard distribution is the uniform distribution.
- Perfect-completeness iff the problem is *promise-true*. (Promise-true here means we restrict the problem the instances that have a solution, but does not mean the search problem is total. Examples include **TFNP** and inverting OWF.)

- The existence of a 2-round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in **NP**.
- Public-coin iff the hard distribution is the uniform distribution.
- Perfect-completeness iff the problem is *promise-true*. (Promise-true here means we restrict the problem the instances that have a solution, but does not mean the search problem is total. Examples include **TFNP** and inverting OWF.)
- If the puzzle is both public-coin and perfectly complete, then the hard-on-average problem is in TFNP.

Comparison to interactive proofs

• In interactive proofs, the verifier and prover get an instance x of a language L, but in puzzles, the attacker and challenger do not.

Comparison to interactive proofs

- In interactive proofs, the verifier and prover get an instance x of a language L, but in puzzles, the attacker and challenger do not.
- In interactive proofs, the prover for soundness can be computationally unbounded, but in puzzles, the attacker for soundness is computationally bounded.

Comparison to interactive proofs

- In interactive proofs, the verifier and prover get an instance x of a language L, but in puzzles, the attacker and challenger do not.
- In interactive proofs, the prover for soundness can be computationally unbounded, but in puzzles, the attacker for soundness is computationally bounded.
- In interactive proofs, the difference between completeness and soundness arises from whether x ∈ L, whereas in puzzles, it arises from the difference in the computation power of attackers.

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

NP is hard on average $\downarrow\downarrow$ There exists a 2-round public-coin puzzle

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

NP is hard on average $$\downarrow$ There exists a 2-round public-coin puzzle $$\downarrow$ There exists a 3-round public-coin puzzle with perfect completeness

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

 $\begin{array}{c} \mathsf{NP} \text{ is hard on average} \\ \downarrow \\ \\ There exists a 2-round public-coin puzzle \\ \downarrow \\ \\ There exists a 3-round public-coin puzzle with perfect completeness \\ \downarrow \\ \\ (Assume OWF don't exist) \\ \\ \\ There exists a 2-round public-coin puzzle with perfect completeness \\ \end{array}$

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

```
\begin{array}{c} \mathsf{NP} \text{ is hard on average} \\ \downarrow \\ \\ There exists a 2-round public-coin puzzle \\ \downarrow \\ \\ There exists a 3-round public-coin puzzle with perfect completeness \\ \downarrow \\ \\ \\ There exists a 2-round public-coin puzzle with perfect completeness \\ \downarrow \\ \\ \\ \\ \\ TFNP \text{ is hard on average} \end{array}
```

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

```
NP is hard on average

↓

There exists a 2-round public-coin puzzle

↓

There exists a 3-round public-coin puzzle with perfect completeness

↓ (Assume OWF don't exist)

There exists a 2-round public-coin puzzle with perfect completeness

↓

TFNP is hard on average
```

Step 1/4: from hard-on-average problems to puzzles

We want to prove: **NP** is hard on average \implies There exists a 2-round public-coin puzzle

Step 1/4: from hard-on-average problems to puzzles

We want to prove: **NP** is hard on average \implies There exists a 2-round public-coin puzzle

Lemma. If an **NP** problem *L* is hard on an efficiently-samplable distribution \mathcal{D} , then there exists an **NP** problem *L'* that is hard on the uniform distribution.

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

We want to prove:

- a 2-round public-coin puzzle \Longrightarrow
- a 3-round public-coin puzzle with perfect completeness

We want to prove:

- a 2-round public-coin puzzle \Longrightarrow
- a 3-round public-coin puzzle with perfect completeness

Attacker
$$\mathcal{A} \xrightarrow{r}$$
 Challenger \mathcal{C}

We want to prove:

- a 2-round public-coin puzzle \Longrightarrow
- a 3-round public-coin puzzle with perfect completeness

We want to prove:

- a 2-round public-coin puzzle \Longrightarrow
- a 3-round public-coin puzzle with perfect completeness

It can be proven that there exists a way to select z_1, \ldots, z_ℓ such that the completeness is perfect and the soundness still holds.

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

```
\begin{array}{c} \mathsf{NP} \text{ is hard on average} \\ \checkmark \Downarrow \\ \mathsf{There exists a 2-round public-coin puzzle} \\ \checkmark \Downarrow \\ \mathsf{There exists a 3-round public-coin puzzle with perfect completeness} \\ \Downarrow \qquad (\mathsf{Assume OWF don't exist}) \\ \mathsf{There exists a 2-round public-coin puzzle with perfect completeness} \\ \Downarrow \\ \mathsf{TFNP} \text{ is hard on average} \end{array}
```

Step 3/4: round reduction

We want to prove: Assuming OWF don't exist,

- a 3-round public-coin puzzle with perfect completeness \Longrightarrow
- a 2-round public-coin puzzle with perfect completeness

Step 3/4: round reduction

We want to prove: Assuming OWF don't exist,

- a 3-round public-coin puzzle with perfect completeness \Longrightarrow
- a 2-round public-coin puzzle with perfect completeness

The proof actually works for k-round to (k - 1)-round for any polynomial k(n). For simplicity, we only consider k = 3.

 \mathcal{C}' accepts iff $\mathcal{C}(p_1, r, p_2) = 1$.

 \mathcal{C}' accepts iff $\mathcal{C}(p_1, r, p_2) = 1$.

Perfect completeness. Trivial.

 \mathcal{C}' accepts iff $\mathcal{C}(p_1, r, p_2) = 1$.

Perfect completeness. Trivial. **Soundness.** False.

[Babai-Moran'88] round reduction

 \mathcal{C}' accepts iff $\mathcal{C}(p_1, r^i, p_2^i) = 1$ for all *i*.

[Babai-Moran'88] round reduction

Perfect completeness. Trivial.

[Babai-Moran'88] round reduction

 \mathcal{C}' accepts iff $\mathcal{C}(p_1, r^i, p_2^i) = 1$ for all *i*.

Perfect completeness. Trivial.

Soudness. [BM88] showed that the transformation preserves soundness in their context of computationally-unbounded $\mathcal{A}, \mathcal{A}'$, but in our setting, soundness is for PPT $\mathcal{A}, \mathcal{A}'$.

Suppose a PPT \mathcal{A}^* breaks the soundness of the 2-round \mathcal{C}' , we construct a PPT \mathcal{B} that breaks the soundness of the 3-round \mathcal{C} .

Suppose a PPT \mathcal{A}^* breaks the soundness of the 2-round \mathcal{C}' , we construct a PPT \mathcal{B} that breaks the soundness of the 3-round \mathcal{C} .

 \mathcal{B} has randomness $s = (s^1, \ldots, s^m, z)$. (s^i are supposed to be the messages \mathcal{A}^* receive, and z the randomness of \mathcal{A}^* .) On the first round, \mathcal{B} simulates $(p_1, p_2^1, \ldots, p_2^m) := \mathcal{A}^*(s)$ and outputs p_1 .

Suppose a PPT \mathcal{A}^* breaks the soundness of the 2-round \mathcal{C}' , we construct a PPT \mathcal{B} that breaks the soundness of the 3-round \mathcal{C} .

 \mathcal{B} has randomness $s = (s^1, \ldots, s^m, z)$. (s^i are supposed to be the messages \mathcal{A}^* receive, and z the randomness of \mathcal{A}^* .) On the first round, \mathcal{B} simulates $(p_1, p_2^1, \ldots, p_2^m) := \mathcal{A}^*(s)$ and outputs p_1 . On the third round, suppose \mathcal{B} receives r from \mathcal{C} .

Suppose a PPT \mathcal{A}^* breaks the soundness of the 2-round \mathcal{C}' , we construct a PPT \mathcal{B} that breaks the soundness of the 3-round \mathcal{C} .

 \mathcal{B} has randomness $s = (s^1, \ldots, s^m, z)$. (s^i are supposed to be the messages \mathcal{A}^* receive, and z the randomness of \mathcal{A}^* .) On the first round, \mathcal{B} simulates $(p_1, p_2^1, \ldots, p_2^m) := \mathcal{A}^*(s)$ and outputs p_1 . On the third round, suppose \mathcal{B} receives r from \mathcal{C} . If $r = s^i$ for some i, \mathcal{B} can output p_2^i .

Suppose a PPT \mathcal{A}^* breaks the soundness of the 2-round \mathcal{C}' , we construct a PPT \mathcal{B} that breaks the soundness of the 3-round \mathcal{C} .

 \mathcal{B} has randomness $s = (s^1, \ldots, s^m, z)$. (s^i are supposed to be the messages \mathcal{A}^* receive, and z the randomness of \mathcal{A}^* .) On the first round, \mathcal{B} simulates $(p_1, p_2^1, \ldots, p_2^m) := \mathcal{A}^*(s)$ and outputs p_1 . On the third round, suppose \mathcal{B} receives r from \mathcal{C} . If $r = s^i$ for some i, \mathcal{B}

can output p_2^i . But what if $r \notin \{s^1, \ldots, s^m\}$?

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^* .

 \mathcal{B} has randomness $s = (s^1, \ldots, s^m, z)$. On the first round, \mathcal{B} simulates $(p_1, p_2^1, \ldots, p_2^m) := \mathcal{A}^*(s)$ and outputs p_1 . On the third round, suppose \mathcal{B} receives r from \mathcal{C} . If $r = s^i$ for some i, \mathcal{B} can output p_2^i . But what if $r \notin \{s^1, \ldots, s^m\}$?

We want to find another transcript of \mathcal{A}^* and \mathcal{C}' in which p_1, r appear.

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^* .

 \mathcal{B} has randomness $s = (s^1, \ldots, s^m, z)$. On the first round, \mathcal{B} simulates $(p_1, p_2^1, \ldots, p_2^m) := \mathcal{A}^*(s)$ and outputs p_1 . On the third round, suppose \mathcal{B} receives r from \mathcal{C} . If $r = s^i$ for some i, \mathcal{B} can output p_2^i . But what if $r \notin \{s^1, \ldots, s^m\}$? We want to find another transcript of \mathcal{A}^* and \mathcal{C}' in which p_1, r appear.

A transcript of \mathcal{A}^* and \mathcal{C}' is a function of the randomness z of \mathcal{A}^* and (r^1, \ldots, r^m) of \mathcal{C}' . Thus, (p_1, r^i) is a function (denoted M) of them and i.

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^* .

 \mathcal{B} has randomness $s = (s^1, \ldots, s^m, z)$. On the first round, \mathcal{B} simulates $(p_1, p_2^1, \ldots, p_2^m) := \mathcal{A}^*(s)$ and outputs p_1 . On the third round, suppose \mathcal{B} receives r from \mathcal{C} . If $r = s^i$ for some i, \mathcal{B} can output p_2^i . But what if $r \notin \{s^1, \ldots, s^m\}$? We want to find another transcript of \mathcal{A}^* and \mathcal{C}' in which p_1, r appear.

A transcript of \mathcal{A}^* and \mathcal{C}' is a function of the randomness z of \mathcal{A}^* and (r^1, \ldots, r^m) of \mathcal{C}' . Thus, (p_1, r^i) is a function (denoted M) of them and i. \mathcal{B} gets $(j, t^1, \ldots, t^m, z') := Inv(p_1, r)$ where Inv inverts M. (If Inv succeeds, then $t^j = r$.)

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^* .

 \mathcal{B} has randomness $s = (s^1, \ldots, s^m, z)$. On the first round, \mathcal{B} simulates $(p_1, p_2^1, \ldots, p_2^m) := \mathcal{A}^*(s)$ and outputs p_1 . On the third round, suppose \mathcal{B} receives r from \mathcal{C} . If $r = s^i$ for some i, \mathcal{B} can output p_2^i . But what if $r \notin \{s^1, \ldots, s^m\}$? We want to find another transcript of \mathcal{A}^* and \mathcal{C}' in which p_1, r appear.

A transcript of \mathcal{A}^* and \mathcal{C}' is a function of the randomness z of \mathcal{A}^* and (r^1, \ldots, r^m) of \mathcal{C}' . Thus, (p_1, r^i) is a function (denoted M) of them and i. \mathcal{B} gets $(j, t^1, \ldots, t^m, z') := Inv(p_1, r)$ where Inv inverts M. (If Inv succeeds, then $t^j = r$.)

Then, \mathcal{B} lets $(q_1, q_2^1, \ldots, q_2^m) := \mathcal{A}^*(t^1, \ldots, t^m, z')$ and outputs q_2^j .

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^* .

 \mathcal{B} has randomness $s = (s^1, \ldots, s^m, z)$. On the first round, \mathcal{B} simulates $(p_1, p_2^1, \ldots, p_2^m) := \mathcal{A}^*(s)$ and outputs p_1 . On the third round, suppose \mathcal{B} receives r from \mathcal{C} . If $r = s^i$ for some i, \mathcal{B} can output p_2^i . But what if $r \notin \{s^1, \ldots, s^m\}$? We want to find another transcript of \mathcal{A}^* and \mathcal{C}' in which p_1, r appear.

A transcript of \mathcal{A}^* and \mathcal{C}' is a function of the randomness z of \mathcal{A}^* and (r^1, \ldots, r^m) of \mathcal{C}' . Thus, (p_1, r^i) is a function (denoted M) of them and i. \mathcal{B} gets $(j, t^1, \ldots, t^m, z') := Inv(p_1, r)$ where Inv inverts M. (If Inv succeeds, then $t^j = r$.) Then, \mathcal{B} lets $(q_1, q_2^1, \ldots, q_2^m) := \mathcal{A}^*(t^1, \ldots, t^m, z')$ and outputs q_2^j . If \mathcal{A}^* and Inv both succeed, then $\mathcal{C}(p_1, r, q_2^j) = \mathcal{C}(p_1, t_j, q_2^j) = 1$

16 / 27

In the last round, \mathcal{B} uses the inverter *Inv* to produce a transcript of \mathcal{A}^* and \mathcal{C}' that is consistent with (p_1, r) , and uses the output of \mathcal{A}^* corresponding to r as the output of itself.

In the last round, \mathcal{B} uses the inverter *Inv* to produce a transcript of \mathcal{A}^* and \mathcal{C}' that is consistent with (p_1, r) , and uses the output of \mathcal{A}^* corresponding to r as the output of itself.

In the last round, \mathcal{B} uses the inverter *Inv* to produce a transcript of \mathcal{A}^* and \mathcal{C}' that is consistent with (p_1, r) , and uses the output of \mathcal{A}^* corresponding to r as the output of itself.

If \mathcal{A}^* and *Inv* both succeed, then \mathcal{B} succeeds. But they don't always succeed!

• The inverter should take inputs from a correct distribution.

In the last round, \mathcal{B} uses the inverter *Inv* to produce a transcript of \mathcal{A}^* and \mathcal{C}' that is consistent with (p_1, r) , and uses the output of \mathcal{A}^* corresponding to r as the output of itself.

If \mathcal{A}^* and *Inv* both succeed, then \mathcal{B} succeeds. But they don't always succeed!

• The inverter should take inputs from a correct distribution. Complicated, omitted.

In the last round, \mathcal{B} uses the inverter *Inv* to produce a transcript of \mathcal{A}^* and \mathcal{C}' that is consistent with (p_1, r) , and uses the output of \mathcal{A}^* corresponding to r as the output of itself.

- The inverter should take inputs from a correct distribution. Complicated, omitted.
- The inverter should produce a distribution that has low correlation with whether \mathcal{A}^* succeeds.

In the last round, \mathcal{B} uses the inverter *Inv* to produce a transcript of \mathcal{A}^* and \mathcal{C}' that is consistent with (p_1, r) , and uses the output of \mathcal{A}^* corresponding to r as the output of itself.

- The inverter should take inputs from a correct distribution. Complicated, omitted.
- The inverter should produce a distribution that has low correlation with whether A^{*} succeeds. Use distributional OWF.

In the last round, \mathcal{B} uses the inverter *Inv* to produce a transcript of \mathcal{A}^* and \mathcal{C}' that is consistent with (p_1, r) , and uses the output of \mathcal{A}^* corresponding to r as the output of itself.

- The inverter should take inputs from a correct distribution. Complicated, omitted.
- The inverter should produce a distribution that has low correlation with whether A^{*} succeeds. Use distributional OWF.

f is a distributional OWF if is is hard to sample a uniformly random pre-image.

That is, for any PPT T,

$$\{(T(f(x)), f(x)) : x \leftarrow \{0, 1\}^n\} \not\approx_s \{(x, f(x)) : x \leftarrow \{0, 1\}^n\}.$$

f is a distributional OWF if is is hard to sample a uniformly random pre-image. That is, for any PPT T,

$$\{(T(f(x)), f(x)) : x \leftarrow \{0, 1\}^n\} \not\approx_s \{(x, f(x)) : x \leftarrow \{0, 1\}^n\}.$$

Lemma. Existence of distributional OWF implies existence of OWF.

In the last round, \mathcal{B} uses the inverter *Inv* to produce a transcript of \mathcal{A}^* and \mathcal{C}' that is consistent with (p_1, r) , and uses the output of \mathcal{A}^* corresponding to r as the output of itself.

- The inverter should take inputs from a correct distribution. Complicated, omitted.
- The inverter should produce a distribution that has low correlation with whether A^{*} succeeds. Use distributional OWF.

Proof overview

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

```
\begin{array}{c} \mathsf{NP} \text{ is hard on average} \\ \checkmark \Downarrow \\ \mathsf{There exists a 2-round public-coin puzzle} \\ \checkmark \Downarrow \\ \mathsf{There exists a 3-round public-coin puzzle with perfect completeness} \\ \checkmark \Downarrow \qquad (\mathsf{Assume OWF don't exist}) \\ \mathsf{There exists a 2-round public-coin puzzle with perfect completeness} \\ \Downarrow \\ \mathsf{TFNP} \text{ is hard on average} \end{array}
```

Step 4/4: TFNP-hardness-on-average from puzzles

There exists a 2-round public-coin puzzle with perfect completeness \implies **TFNP** is hard on average

Straight-forward from definition.

Proof overview

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

Proof overview

Main result. If **NP** is hard on average and OWF don't exist, then **TFNP** is hard on average.

A caveat: infinitely-often

Main result: **TFNP** is hard on average in Pessiland.*

Main result: TFNP is hard on average in Pessiland.*

What we actually proved in the round-reduction step is, for every n, if there exists a 3-round puzzle (with some properties) with security parameter 1^n , then there exist either OWF with security parameter 1^n , or 2-round puzzles with security parameter 1^n .

Main result: TFNP is hard on average in Pessiland.*

What we actually proved in the round-reduction step is, for every n, if there exists a 3-round puzzle (with some properties) with security parameter 1^n , then there exist either OWF with security parameter 1^n , or 2-round puzzles with security parameter 1^n .

Therefore, even if 3-round puzzles exist for all sufficiently large n, we can only get the following:

- Either OWF exist for all sufficiently large *n*, or 2-round puzzles exist for infinitely many *n*.
- Either OWF exist for infinitely many *n*, or 2-round puzzles exist for all sufficiently large *n*.

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 24/27

Is it Easier to Prove Theorems that are Guaranteed to be True?

Rafael Pass & Muthuramakrishnan Venkitasubramaniam

Presented by Yizhi Huang & Jiaqian Li

2024-02-15

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 通 > 26 / 27

Helmstedt, Holy Roman Empire, 1799.

Helmstedt, Holy Roman Empire, 1799.

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

• Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

- Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.
- If Gauss claims x is false, no way for Pfaff to verify!

Helmstedt, Holy Roman Empire, 1799.

Johann Friedrich Pfaff

- Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.
- If Gauss claims x is false, no way for Pfaff to verify!
- What if Pfaff always gives Gauss a true statement so that he can verify Gauss' solution? Does this makes the task easier for Gauss?

Helmstedt, Holy Roman Empire, 1799.

Johann Friedrich Pfaff

- Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.
- If Gauss claims x is false, no way for Pfaff to verify!
- What if Pfaff always gives Gauss a true statement so that he can verify Gauss' solution? Does this makes the task easier for Gauss?
- This gives a promise-true NP search problem.

Helmstedt, Holy Roman Empire, 1799.

Johann Friedrich Pfaff

- Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.
- If Gauss claims x is false, no way for Pfaff to verify!
- What if Pfaff always gives Gauss a true statement so that he can verify Gauss' solution? Does this makes the task easier for Gauss?
- This gives a promise-true NP search problem.
- So the question is: are promise-true NP search problems easier than NP search problems?

Helmstedt, Holy Roman Empire, 1799.

Johann Friedrich Pfaff

- The question is: are promise-true NP search problems easier than NP search problems?
- This paper proved that hard-on-average NP problems imply OWF or hard-on-average TFNP problems.

Helmstedt, Holy Roman Empire, 1799.

Johann Friedrich Pfaff

- The question is: are promise-true NP search problems easier than NP search problems?
- This paper proved that hard-on-average NP problems imply OWF or hard-on-average TFNP problems.
- Both inverting OWF and **TFNP** are promise-true!

Helmstedt, Holy Roman Empire, 1799.

Johann Friedrich Pfaff

- The question is: are promise-true NP search problems easier than NP search problems?
- This paper proved that hard-on-average NP problems imply OWF or hard-on-average TFNP problems.
- Both inverting OWF and **TFNP** are promise-true!
- Therefore—

NO.

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト ミ の へ ()・ 27 / 27