Is it Easier to Prove Theorems that are Guaranteed to be True?

Rafael Pass \& Muthuramakrishnan Venkitasubramaniam
Presented by Yizhi Huang \& Jiaqian Li

2024-02-15

TL;DR

NO.

TL;DR (actual)

TFNP is hard on average in Pessiland.*

TL;DR (actual)

TFNP is hard on average in Pessiland.*
That is, if NP is hard on average and OWF don't exist, then TFNP is hard on average.

TL;DR (actual)

TFNP is hard on average in Pessiland.*
That is, if NP is hard on average and OWF don't exist, then TFNP is hard on average.

- In comparison, recall [Hubáček-Naor-Yogev'16] showed that if NP is hard on average, then TFNP/poly is hard on average.

TL;DR (actual)

TFNP is hard on average in Pessiland.*
That is, if NP is hard on average and OWF don't exist, then TFNP is hard on average.

- In comparison, recall [Hubáček-Naor-Yogev'16] showed that if NP is hard on average, then TFNP/poly is hard on average.
Equivalently, if NP is hard on average, then either OWF exist, or TFNP is hard on average.

Interactive puzzles

Interactive puzzles

- Completeness. There exists an (inefficient) attacker $\mathcal{A}\left(1^{n}\right)$ that succeeds in making $\mathcal{C}\left(1^{n}\right)$ accept unless with negligible probability.
- Computational Soundness. There does not exists PPT attacker $\mathcal{A}^{*}\left(1^{n}\right)$ that succeeds in making $\mathcal{C}\left(1^{n}\right)$ accept with inverse polynomial probability.
- Public Verifiability. Whether $\mathcal{C}\left(1^{n}\right)$ accepts is a deterministic poly-time function over the transcript $\left(m_{1}, p_{1}, \ldots, m_{k}, p_{k}\right)$.

Interactive puzzles

Attacker $\mathcal{A} \longrightarrow$ Challenger \mathcal{C} (PPT)
Input: 1^{n}

- Completeness. There exists an (inefficient) attacker $\mathcal{A}\left(1^{n}\right)$ that succeeds in making $\mathcal{C}\left(1^{n}\right)$ accept unless with negligible probability.
- Computational Soundness. There does not exists PPT attacker $\mathcal{A}^{*}\left(1^{n}\right)$ that succeeds in making $\mathcal{C}\left(1^{n}\right)$ accept with inverse polynomial probability.
- Public Verifiability. Whether $\mathcal{C}\left(1^{n}\right)$ accepts is a deterministic poly-time function over the transcript $\left(m_{1}, p_{1}, \ldots, m_{k}, p_{k}\right)$.
Remark. Negligible can be changed to $1 / 3$.

Interactive puzzles (optional properties)

- k-round if the attacker and the challenger send k messages in total (for example, the above diagram is $2 t$-round).

Interactive puzzles (optional properties)

- k-round if the attacker and the challenger send k messages in total (for example, the above diagram is $2 t$-round).
- Public-coin if the challenger only sends her randomness in each round. (The attacker can perform all computation instead.)

Interactive puzzles (optional properties)

- k-round if the attacker and the challenger send k messages in total (for example, the above diagram is $2 t$-round).
- Public-coin if the challenger only sends her randomness in each round. (The attacker can perform all computation instead.)
- Perfect completeness if there exists an attacker \mathcal{A} that always succeeds in making $\mathcal{C}\left(1^{n}\right)$ output 1 .

2-round puzzles

2-round puzzles

(m, p) is an NP relation (because of public-verifiability).

2-round puzzles

(m, p) is an NP relation (because of public-verifiability).

- The existence of a 2-round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in NP.

2-round puzzles

(m, p) is an NP relation (because of public-verifiability).

- The existence of a 2-round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in NP.
- Public-coin iff the hard distribution is the uniform distribution.

2-round puzzles

(m, p) is an NP relation (because of public-verifiability).

- The existence of a 2-round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in NP.
- Public-coin iff the hard distribution is the uniform distribution.
- Perfect-completeness iff the problem is promise-true. (Promise-true here means we restrict the problem the instances that have a solution, but does not mean the search problem is total.)

2-round puzzles

(m, p) is an NP relation (because of public-verifiability).

- The existence of a 2-round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in NP.
- Public-coin iff the hard distribution is the uniform distribution.
- Perfect-completeness iff the problem is promise-true.
(Promise-true here means we restrict the problem the instances that have a solution, but does not mean the search problem is total. Examples include TFNP and inverting OWF.)

2-round puzzles

(m, p) is an NP relation (because of public-verifiability).

- The existence of a 2 -round puzzle is syntactically equivalent to the existence of a hard-on-average search problem in NP.
- Public-coin iff the hard distribution is the uniform distribution.
- Perfect-completeness iff the problem is promise-true.
(Promise-true here means we restrict the problem the instances that have a solution, but does not mean the search problem is total. Examples include TFNP and inverting OWF.)
- If the puzzle is both public-coin and perfectly complete, then the hard-on-average problem is in TFNP.

Comparison to interactive proofs

- In interactive proofs, the verifier and prover get an instance x of a language L, but in puzzles, the attacker and challenger do not.

Comparison to interactive proofs

- In interactive proofs, the verifier and prover get an instance x of a language L, but in puzzles, the attacker and challenger do not.
- In interactive proofs, the prover for soundness can be computationally unbounded, but in puzzles, the attacker for soundness is computationally bounded.

Comparison to interactive proofs

- In interactive proofs, the verifier and prover get an instance x of a language L, but in puzzles, the attacker and challenger do not.
- In interactive proofs, the prover for soundness can be computationally unbounded, but in puzzles, the attacker for soundness is computationally bounded.
- In interactive proofs, the difference between completeness and soundness arises from whether $x \in L$, whereas in puzzles, it arises from the difference in the computation power of attackers.

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average \Downarrow
There exists a 2 -round public-coin puzzle

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average \Downarrow
There exists a 2 -round public-coin puzzle \Downarrow
There exists a 3-round public-coin puzzle with perfect completeness

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average

There exists a 2 -round public-coin puzzle \Downarrow
There exists a 3-round public-coin puzzle with perfect completeness
$\Downarrow \quad$ (Assume OWF don't exist)
There exists a 2-round public-coin puzzle with perfect completeness

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average

There exists a 2 -round public-coin puzzle \Downarrow
There exists a 3-round public-coin puzzle with perfect completeness
$\Downarrow \quad$ (Assume OWF don't exist)
There exists a 2-round public-coin puzzle with perfect completeness
\Downarrow
TFNP is hard on average

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average

There exists a 2 -round public-coin puzzle \Downarrow
There exists a 3-round public-coin puzzle with perfect completeness
$\Downarrow \quad$ (Assume OWF don't exist)
There exists a 2-round public-coin puzzle with perfect completeness
\Downarrow
TFNP is hard on average

Step 1/4: from hard-on-average problems to puzzles

We want to prove:
NP is hard on average \Longrightarrow There exists a 2-round public-coin puzzle

Step 1/4: from hard-on-average problems to puzzles

We want to prove:
NP is hard on average \Longrightarrow There exists a 2-round public-coin puzzle
Lemma. If an NP problem L is hard on an efficiently-samplable distribution \mathcal{D}, then there exists an NP problem L^{\prime} that is hard on the uniform distribution.

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average

$$
\checkmark \Downarrow
$$

There exists a 2 -round public-coin puzzle
\Downarrow
There exists a 3-round public-coin puzzle with perfect completeness
$\Downarrow \quad$ (Assume OWF don't exist)
There exists a 2-round public-coin puzzle with perfect completeness
\Downarrow
TFNP is hard on average

Step 2/4: perfect completeness at the expense of a round

We want to prove:
a 2-round public-coin puzzle \Longrightarrow
a 3-round public-coin puzzle with perfect completeness

Step 2/4: perfect completeness at the expense of a round

We want to prove:
a 2 -round public-coin puzzle \Longrightarrow
a 3-round public-coin puzzle with perfect completeness

Step 2/4: perfect completeness at the expense of a round

We want to prove:
a 2 -round public-coin puzzle \Longrightarrow
a 3-round public-coin puzzle with perfect completeness

Attacker \mathcal{A}^{\prime}

Challenger \mathcal{C}^{\prime}
\mathcal{C}^{\prime} accepts iff $\mathcal{C}\left(z_{i} \oplus r, p^{\prime}\right)=1$.

Step 2/4: perfect completeness at the expense of a round

We want to prove:
a 2-round public-coin puzzle \Longrightarrow
a 3-round public-coin puzzle with perfect completeness

Attacker $\mathcal{A}^{\prime} \longleftarrow\left(i, p^{\prime}\right) \quad$ Challenger \mathcal{C}^{\prime}
\mathcal{C}^{\prime} accepts iff $\mathcal{C}\left(z_{i} \oplus r, p^{\prime}\right)=1$.
It can be proven that there exists a way to select z_{1}, \ldots, z_{ℓ} such that the completeness is perfect and the soundness still holds.

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average

$$
\checkmark \Downarrow
$$

There exists a 2 -round public-coin puzzle
$\checkmark \Downarrow$
There exists a 3-round public-coin puzzle with perfect completeness
$\Downarrow \quad$ (Assume OWF don't exist)
There exists a 2-round public-coin puzzle with perfect completeness
\Downarrow
TFNP is hard on average

Step 3/4: round reduction

We want to prove:
Assuming OWF don't exist,
a 3-round public-coin puzzle with perfect completeness \Longrightarrow
a 2-round public-coin puzzle with perfect completeness

Step 3/4: round reduction

We want to prove:
Assuming OWF don't exist,
a 3-round public-coin puzzle with perfect completeness \Longrightarrow
a 2-round public-coin puzzle with perfect completeness
The proof actually works for k-round to $(k-1)$-round for any polynomial $k(n)$. For simplicity, we only consider $k=3$.

First attempt

First attempt

First attempt

\mathcal{C}^{\prime} accepts iff $\mathcal{C}\left(p_{1}, r, p_{2}\right)=1$.
Perfect completeness. Trivial.

First attempt

\mathcal{C}^{\prime} accepts iff $\mathcal{C}\left(p_{1}, r, p_{2}\right)=1$.
Perfect completeness. Trivial. Soundness. False.

[Babai-Moran'88] round reduction

Attacker $\mathcal{A}^{\prime} \leftarrow \frac{r^{1}, \ldots, r^{m}}{p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}} \quad$ Challenger \mathcal{C}^{\prime}
\mathcal{C}^{\prime} accepts iff $\mathcal{C}\left(p_{1}, r^{i}, p_{2}^{i}\right)=1$ for all i.

[Babai-Moran'88] round reduction

Attacker $\mathcal{A}^{\prime} \longleftrightarrow \frac{r^{1}, \ldots, r^{m}}{p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}}$ Challenger \mathcal{C}^{\prime}
\mathcal{C}^{\prime} accepts iff $\mathcal{C}\left(p_{1}, r^{i}, p_{2}^{i}\right)=1$ for all i.

Perfect completeness. Trivial.

[Babai-Moran'88] round reduction

Perfect completeness. Trivial.
Soudness. [BM88] showed that the transformation preserves soundness in their context of computationally-unbounded $\mathcal{A}, \mathcal{A}^{\prime}$, but in our setting, soundness is for PPT $\mathcal{A}, \mathcal{A}^{\prime}$.

Soundness of the round reduction (informal)

Suppose a PPT \mathcal{A}^{*} breaks the soundness of the 2 -round \mathcal{C}^{\prime}, we construct a PPT \mathcal{B} that breaks the soundness of the 3 -round \mathcal{C}.

Soundness of the round reduction (informal)

Suppose a PPT \mathcal{A}^{*} breaks the soundness of the 2 -round \mathcal{C}^{\prime}, we construct a PPT \mathcal{B} that breaks the soundness of the 3 -round \mathcal{C}.
\mathcal{B} has randomness $s=\left(s^{1}, \ldots, s^{m}, z\right)$. (s^{i} are supposed to be the messages \mathcal{A}^{*} receive, and z the randomness of \mathcal{A}^{*}.)
On the first round, \mathcal{B} simulates $\left(p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}\right):=\mathcal{A}^{*}(s)$ and outputs p_{1}.

Soundness of the round reduction (informal)

Suppose a $\operatorname{PPT} \mathcal{A}^{*}$ breaks the soundness of the 2 -round \mathcal{C}^{\prime}, we construct a PPT \mathcal{B} that breaks the soundness of the 3 -round \mathcal{C}.
\mathcal{B} has randomness $s=\left(s^{1}, \ldots, s^{m}, z\right)$. (s^{i} are supposed to be the messages \mathcal{A}^{*} receive, and z the randomness of \mathcal{A}^{*}.)
On the first round, \mathcal{B} simulates $\left(p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}\right):=\mathcal{A}^{*}(s)$ and outputs p_{1}.
On the third round, suppose \mathcal{B} receives r from \mathcal{C}.

Soundness of the round reduction (informal)

Suppose a $\operatorname{PPT} \mathcal{A}^{*}$ breaks the soundness of the 2 -round \mathcal{C}^{\prime}, we construct a PPT \mathcal{B} that breaks the soundness of the 3 -round \mathcal{C}.
\mathcal{B} has randomness $s=\left(s^{1}, \ldots, s^{m}, z\right)$. (s^{i} are supposed to be the messages \mathcal{A}^{*} receive, and z the randomness of \mathcal{A}^{*}.)
On the first round, \mathcal{B} simulates $\left(p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}\right):=\mathcal{A}^{*}(s)$ and outputs p_{1}. On the third round, suppose \mathcal{B} receives r from \mathcal{C}. If $r=s^{i}$ for some i, \mathcal{B} can output p_{2}^{i}.

Soundness of the round reduction (informal)

Suppose a $\operatorname{PPT} \mathcal{A}^{*}$ breaks the soundness of the 2 -round \mathcal{C}^{\prime}, we construct a PPT \mathcal{B} that breaks the soundness of the 3 -round \mathcal{C}.
\mathcal{B} has randomness $s=\left(s^{1}, \ldots, s^{m}, z\right)$. (s^{i} are supposed to be the messages \mathcal{A}^{*} receive, and z the randomness of \mathcal{A}^{*}.)
On the first round, \mathcal{B} simulates $\left(p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}\right):=\mathcal{A}^{*}(s)$ and outputs p_{1}.
On the third round, suppose \mathcal{B} receives r from \mathcal{C}. If $r=s^{i}$ for some i, \mathcal{B} can output p_{2}^{i}. But what if $r \notin\left\{s^{1}, \ldots, s^{m}\right\}$?

Soundness of the round reduction (informal)

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^{*}.
\mathcal{B} has randomness $s=\left(s^{1}, \ldots, s^{m}, z\right)$.
On the first round, \mathcal{B} simulates $\left(p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}\right):=\mathcal{A}^{*}(s)$ and outputs p_{1}.
On the third round, suppose \mathcal{B} receives r from \mathcal{C}. If $r=s^{i}$ for some i, \mathcal{B} can output p_{2}^{i}. But what if $r \notin\left\{s^{1}, \ldots, s^{m}\right\}$?

We want to find another transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} in which p_{1}, r appear.

Soundness of the round reduction (informal)

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^{*}.
\mathcal{B} has randomness $s=\left(s^{1}, \ldots, s^{m}, z\right)$.
On the first round, \mathcal{B} simulates $\left(p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}\right):=\mathcal{A}^{*}(s)$ and outputs p_{1}.
On the third round, suppose \mathcal{B} receives r from \mathcal{C}. If $r=s^{i}$ for some i, \mathcal{B} can output p_{2}^{i}. But what if $r \notin\left\{s^{1}, \ldots, s^{m}\right\}$?
We want to find another transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} in which p_{1}, r appear.
A transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} is a function of the randomness z of \mathcal{A}^{*} and $\left(r^{1}, \ldots, r^{m}\right)$ of \mathcal{C}^{\prime}. Thus, $\left(p_{1}, r^{i}\right)$ is a function (denoted M) of them and i.

Soundness of the round reduction (informal)

Attacker $\mathcal{A}^{*} \longleftrightarrow \frac{r^{1}, \ldots, r^{m}}{p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}}$ Challenger \mathcal{C}^{\prime}
\mathcal{C}^{\prime} accepts iff $\mathcal{C}\left(p_{1}, r^{i}, p_{2}^{i}\right)=1$ for all i.

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^{*}.
\mathcal{B} has randomness $s=\left(s^{1}, \ldots, s^{m}, z\right)$.
On the first round, \mathcal{B} simulates $\left(p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}\right):=\mathcal{A}^{*}(s)$ and outputs p_{1}.
On the third round, suppose \mathcal{B} receives r from \mathcal{C}. If $r=s^{i}$ for some i, \mathcal{B} can output p_{2}^{i}. But what if $r \notin\left\{s^{1}, \ldots, s^{m}\right\}$?
We want to find another transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} in which p_{1}, r appear.
A transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} is a function of the randomness z of \mathcal{A}^{*} and $\left(r^{1}, \ldots, r^{m}\right)$ of \mathcal{C}^{\prime}. Thus, $\left(p_{1}, r^{i}\right)$ is a function (denoted M) of them and i. \mathcal{B} gets $\left(j, t^{1}, \ldots, t^{m}, z^{\prime}\right):=\operatorname{Inv}\left(p_{1}, r\right)$ where Inv inverts M. (If Inv succeeds, then $t^{j}=r$.)

Soundness of the round reduction (informal)

Attacker $\mathcal{A}^{*} \longleftrightarrow \frac{r^{1}, \ldots, r^{m}}{p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}}$ Challenger \mathcal{C}^{\prime}
\mathcal{C}^{\prime} accepts iff $\mathcal{C}\left(p_{1}, r^{i}, p_{2}^{i}\right)=1$ for all i.

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^{*}.
\mathcal{B} has randomness $s=\left(s^{1}, \ldots, s^{m}, z\right)$.
On the first round, \mathcal{B} simulates $\left(p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}\right):=\mathcal{A}^{*}(s)$ and outputs p_{1}.
On the third round, suppose \mathcal{B} receives r from \mathcal{C}. If $r=s^{i}$ for some i, \mathcal{B} can output p_{2}^{i}. But what if $r \notin\left\{s^{1}, \ldots, s^{m}\right\}$?
We want to find another transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} in which p_{1}, r appear.
A transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} is a function of the randomness z of \mathcal{A}^{*} and $\left(r^{1}, \ldots, r^{m}\right)$ of \mathcal{C}^{\prime}. Thus, $\left(p_{1}, r^{i}\right)$ is a function (denoted M) of them and i. \mathcal{B} gets $\left(j, t^{1}, \ldots, t^{m}, z^{\prime}\right):=\operatorname{Inv}\left(p_{1}, r\right)$ where Inv inverts M. (If Inv succeeds, then $t^{j}=r$.)
Then, \mathcal{B} lets $\left(q_{1}, q_{2}^{1}, \ldots, q_{2}^{m}\right):=\mathcal{A}^{*}\left(t^{1}, \ldots, t^{m}, z^{\prime}\right)$ and outputs q_{2}^{j}.

Soundness of the round reduction (informal)

Attacker $\mathcal{A}^{*} \longleftrightarrow \frac{r^{1}, \ldots, r^{m}}{p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}}$ Challenger \mathcal{C}^{\prime}
\mathcal{C}^{\prime} accepts iff $\mathcal{C}\left(p_{1}, r^{i}, p_{2}^{i}\right)=1$ for all i.

We construct a PPT \mathcal{B} from the PPT \mathcal{A}^{*}.
\mathcal{B} has randomness $s=\left(s^{1}, \ldots, s^{m}, z\right)$.
On the first round, \mathcal{B} simulates $\left(p_{1}, p_{2}^{1}, \ldots, p_{2}^{m}\right):=\mathcal{A}^{*}(s)$ and outputs p_{1}.
On the third round, suppose \mathcal{B} receives r from \mathcal{C}. If $r=s^{i}$ for some i, \mathcal{B} can output p_{2}^{i}. But what if $r \notin\left\{s^{1}, \ldots, s^{m}\right\}$?
We want to find another transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} in which p_{1}, r appear.
A transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} is a function of the randomness z of \mathcal{A}^{*} and $\left(r^{1}, \ldots, r^{m}\right)$ of \mathcal{C}^{\prime}. Thus, $\left(p_{1}, r^{i}\right)$ is a function (denoted M) of them and i. \mathcal{B} gets $\left(j, t^{1}, \ldots, t^{m}, z^{\prime}\right):=\operatorname{Inv}\left(p_{1}, r\right)$ where Inv inverts M. (If Inv succeeds, then $t^{j}=r$.)
Then, \mathcal{B} lets $\left(q_{1}, q_{2}^{1}, \ldots, q_{2}^{m}\right):=\mathcal{A}^{*}\left(t^{1}, \ldots, t^{m}, z^{\prime}\right)$ and outputs q_{2}^{j}. If \mathcal{A}^{*} and Inv both succeed, then $\mathcal{C}\left(p_{1}, r, q_{2}^{j}\right)=\mathcal{C}\left(p_{1}, t_{j}, q_{2}^{j}\right)=1$.

Soundness of the round reduction (informal, cont'd)

In the last round, \mathcal{B} uses the inverter Inv to produce a transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} that is consistent with $\left(p_{1}, r\right)$, and uses the output of \mathcal{A}^{*} corresponding to r as the output of itself.

Soundness of the round reduction (informal, cont'd)

In the last round, \mathcal{B} uses the inverter Inv to produce a transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} that is consistent with $\left(p_{1}, r\right)$, and uses the output of \mathcal{A}^{*} corresponding to r as the output of itself.

If \mathcal{A}^{*} and Inv both succeed, then \mathcal{B} succeeds.
But they don't always succeed!

Soundness of the round reduction (informal, cont'd)

In the last round, \mathcal{B} uses the inverter Inv to produce a transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} that is consistent with $\left(p_{1}, r\right)$, and uses the output of \mathcal{A}^{*} corresponding to r as the output of itself.

If \mathcal{A}^{*} and Inv both succeed, then \mathcal{B} succeeds.
But they don't always succeed!

- The inverter should take inputs from a correct distribution.

Soundness of the round reduction (informal, cont'd)

In the last round, \mathcal{B} uses the inverter Inv to produce a transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} that is consistent with $\left(p_{1}, r\right)$, and uses the output of \mathcal{A}^{*} corresponding to r as the output of itself.

If \mathcal{A}^{*} and Inv both succeed, then \mathcal{B} succeeds.
But they don't always succeed!

- The inverter should take inputs from a correct distribution. Complicated, omitted.

Soundness of the round reduction (informal, cont'd)

In the last round, \mathcal{B} uses the inverter Inv to produce a transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} that is consistent with $\left(p_{1}, r\right)$, and uses the output of \mathcal{A}^{*} corresponding to r as the output of itself.

If \mathcal{A}^{*} and Inv both succeed, then \mathcal{B} succeeds.
But they don't always succeed!

- The inverter should take inputs from a correct distribution. Complicated, omitted.
- The inverter should produce a distribution that has low correlation with whether \mathcal{A}^{*} succeeds.

Soundness of the round reduction (informal, cont'd)

In the last round, \mathcal{B} uses the inverter Inv to produce a transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} that is consistent with $\left(p_{1}, r\right)$, and uses the output of \mathcal{A}^{*} corresponding to r as the output of itself.

If \mathcal{A}^{*} and Inv both succeed, then \mathcal{B} succeeds.
But they don't always succeed!

- The inverter should take inputs from a correct distribution. Complicated, omitted.
- The inverter should produce a distribution that has low correlation with whether \mathcal{A}^{*} succeeds. Use distributional OWF.

Soundness of the round reduction (informal, cont'd)

In the last round, \mathcal{B} uses the inverter Inv to produce a transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} that is consistent with $\left(p_{1}, r\right)$, and uses the output of \mathcal{A}^{*} corresponding to r as the output of itself.

If \mathcal{A}^{*} and Inv both succeed, then \mathcal{B} succeeds.
But they don't always succeed!

- The inverter should take inputs from a correct distribution. Complicated, omitted.
- The inverter should produce a distribution that has low correlation with whether \mathcal{A}^{*} succeeds. Use distributional OWF.

Distributional OWF

f is a distributional OWF if is is hard to sample a uniformly random pre-image.
That is, for any PPT T,

$$
\left\{(T(f(x)), f(x)): x \leftarrow\{0,1\}^{n}\right\} \not \overbrace{s}\left\{(x, f(x)): x \leftarrow\{0,1\}^{n}\right\}
$$

Distributional OWF

f is a distributional OWF if is is hard to sample a uniformly random pre-image.
That is, for any PPT T,

$$
\left\{(T(f(x)), f(x)): x \leftarrow\{0,1\}^{n}\right\} \not \overbrace{s}\left\{(x, f(x)): x \leftarrow\{0,1\}^{n}\right\}
$$

Lemma. Existence of distributional OWF implies existence of OWF.

Soundness of the round reduction (informal, cont'd)

In the last round, \mathcal{B} uses the inverter Inv to produce a transcript of \mathcal{A}^{*} and \mathcal{C}^{\prime} that is consistent with $\left(p_{1}, r\right)$, and uses the output of \mathcal{A}^{*} corresponding to r as the output of itself.

If \mathcal{A}^{*} and Inv both succeed, then \mathcal{B} succeeds.
But they don't always succeed!

- The inverter should take inputs from a correct distribution. Complicated, omitted.
- The inverter should produce a distribution that has low correlation with whether \mathcal{A}^{*} succeeds. Use distributional OWF.

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average

$$
\checkmark \Downarrow
$$

There exists a 2 -round public-coin puzzle

$$
\checkmark \Downarrow
$$

There exists a 3-round public-coin puzzle with perfect completeness $\checkmark \Downarrow \quad$ (Assume OWF don't exist)
There exists a 2-round public-coin puzzle with perfect completeness
TFNP is hard on average

Step 4/4: TFNP-hardness-on-average from puzzles

There exists a 2 -round public-coin puzzle with perfect completeness \Longrightarrow TFNP is hard on average

Straight-forward from definition.

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average

$$
\checkmark \Downarrow
$$

There exists a 2 -round public-coin puzzle

$$
\checkmark \Downarrow
$$

There exists a 3-round public-coin puzzle with perfect completeness $\checkmark \Downarrow \quad$ (Assume OWF don't exist)
There exists a 2-round public-coin puzzle with perfect completeness

$$
\checkmark \Downarrow
$$

TFNP is hard on average

Proof overview

Main result. If NP is hard on average and OWF don't exist, then TFNP is hard on average.

NP is hard on average

$$
\checkmark \Downarrow
$$

There exists a 2 -round public-coin puzzle

$$
\checkmark \Downarrow
$$

There exists a 3-round public-coin puzzle with perfect completeness $\checkmark \Downarrow \quad$ (Assume OWF don't exist)
There exists a 2-round public-coin puzzle with perfect completeness

$$
\checkmark \Downarrow
$$

TFNP is hard on average

A caveat: infinitely-often

Main result: TFNP is hard on average in Pessiland.*

A caveat: infinitely-often

Main result: TFNP is hard on average in Pessiland.*
What we actually proved in the round-reduction step is, for every n, if there exists a 3 -round puzzle (with some properties) with security parameter 1^{n}, then there exist either OWF with security parameter 1^{n}, or 2 -round puzzles with security parameter 1^{n}.

A caveat: infinitely-often

Main result: TFNP is hard on average in Pessiland.*
What we actually proved in the round-reduction step is, for every n, if there exists a 3 -round puzzle (with some properties) with security parameter 1^{n}, then there exist either OWF with security parameter 1^{n}, or 2 -round puzzles with security parameter 1^{n}.
Therefore, even if 3 -round puzzles exist for all sufficiently large n, we can only get the following:

- Either OWF exist for all sufficiently large n, or 2 -round puzzles exist for infinitely many n.
- Either OWF exist for infinitely many n, or 2 -round puzzles exist for all sufficiently large n.

Wait! But the title is. . . ?

Is it Easier to Prove Theorems that are Guaranteed to be True?

Rafael Pass \& Muthuramakrishnan Venkitasubramaniam
Presented by Yizhi Huang \& Jiaqian Li

2024-02-15

Wait! But the title is. . . ?

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

- Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

- Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.
- If Gauss claims x is false, no way for Pfaff to verify!

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

- Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.
- If Gauss claims x is false, no way for Pfaff to verify!
- What if Pfaff always gives Gauss a true statement so that he can verify Gauss' solution? Does this makes the task easier for Gauss?

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

- Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.
- If Gauss claims x is false, no way for Pfaff to verify!
- What if Pfaff always gives Gauss a true statement so that he can verify Gauss' solution? Does this makes the task easier for Gauss?
- This gives a promise-true NP search problem.

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

- Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x, and asks him to either provide a proof w for x, or claim x is false.
- If Gauss claims x is false, no way for Pfaff to verify!
- What if Pfaff always gives Gauss a true statement so that he can verify Gauss' solution? Does this makes the task easier for Gauss?
- This gives a promise-true NP search problem.
- So the question is: are promise-true NP search problems easier than NP search problems?

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

- The question is: are promise-true NP search problems easier than NP search problems?
- This paper proved that hard-on-average NP problems imply OWF or hard-on-average TFNP problems.

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

- The question is: are promise-true NP search problems easier than NP search problems?
- This paper proved that hard-on-average NP problems imply OWF or hard-on-average TFNP problems.
- Both inverting OWF and TFNP are promise-true!

Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss

Johann Friedrich Pfaff

- The question is: are promise-true NP search problems easier than NP search problems?
- This paper proved that hard-on-average NP problems imply OWF or hard-on-average TFNP problems.
- Both inverting OWF and TFNP are promise-true!
- Therefore-

TL;DR

NO.

