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TL;DR

NO.
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TL;DR (actual)

TFNP is hard on average in Pessiland.*

That is, if NP is hard on average and OWF don’t exist, then TFNP is
hard on average.

In comparison, recall [Hubáček-Naor-Yogev’16] showed that if NP is
hard on average, then TFNP/poly is hard on average.

Equivalently, if NP is hard on average, then either OWF exist, or TFNP is
hard on average.
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Interactive puzzles

Attacker A Challenger C (PPT)

m1

p1
...
mt

pt

Input: 1n Input: 1n

Output: Accept or Reject

Completeness. There exists an (inefficient) attacker A(1n) that
succeeds in making C(1n) accept unless with negligible probability.

Computational Soundness. There does not exists PPT attacker
A∗(1n) that succeeds in making C(1n) accept with inverse polynomial
probability.

Public Verifiability. Whether C(1n) accepts is a deterministic
poly-time function over the transcript (m1, p1, . . . ,mk , pk).

Remark. Negligible can be changed to 1/3.
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Interactive puzzles (optional properties)

Attacker A Challenger C (PPT)

m1

p1
...
mt

pt

Input: 1n Input: 1n

Output: Accept or Reject

k-round if the attacker and the challenger send k messages in total
(for example, the above diagram is 2t-round).

Public-coin if the challenger only sends her randomness in each
round. (The attacker can perform all computation instead.)

Perfect completeness if there exists an attacker A that always
succeeds in making C(1n) output 1.
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2-round puzzles

Attacker A Challenger C (PPT)
m

p

Input: 1n Input: 1n

Output: Accept or Reject

(m, p) is an NP relation (because of public-verifiability).

The existence of a 2-round puzzle is syntactically equivalent to the
existence of a hard-on-average search problem in NP.

Public-coin iff the hard distribution is the uniform distribution.

Perfect-completeness iff the problem is promise-true.
(Promise-true here means we restrict the problem the instances that
have a solution, but does not mean the search problem is total. )

If the puzzle is both public-coin and perfectly complete, then the
hard-on-average problem is in TFNP.
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Comparison to interactive proofs

In interactive proofs, the verifier and prover get an instance x of a
language L, but in puzzles, the attacker and challenger do not.

In interactive proofs, the prover for soundness can be computationally
unbounded, but in puzzles, the attacker for soundness is
computationally bounded.

In interactive proofs, the difference between completeness and
soundness arises from whether x ∈ L, whereas in puzzles, it arises
from the difference in the computation power of attackers.
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Proof overview

Main result. If NP is hard on average and OWF don’t exist, then TFNP
is hard on average.

NP is hard on average

✓

⇓
There exists a 2-round public-coin puzzle

✓

⇓
There exists a 3-round public-coin puzzle with perfect completeness

✓

⇓ (Assume OWF don’t exist)
There exists a 2-round public-coin puzzle with perfect completeness

✓

⇓
TFNP is hard on average
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Step 1/4: from hard-on-average problems to puzzles

We want to prove:
NP is hard on average =⇒ There exists a 2-round public-coin puzzle

Lemma. If an NP problem L is hard on an efficiently-samplable
distribution D, then there exists an NP problem L′ that is hard on the
uniform distribution.
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Step 2/4: perfect completeness at the expense of a round

We want to prove:
a 2-round public-coin puzzle =⇒
a 3-round public-coin puzzle with perfect completeness

Attacker A Challenger C
r

p

————————————————————⇓ ——————————————————————

Attacker A′ Challenger C′

z1, . . . , zℓ

r

(i , p′)

C′ accepts iff C(zi ⊕ r , p′) = 1.

It can be proven that there exists a way to select z1, . . . , zℓ such that the
completeness is perfect and the soundness still holds.

11 / 27
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Proof overview

Main result. If NP is hard on average and OWF don’t exist, then TFNP
is hard on average.

NP is hard on average
✓⇓

There exists a 2-round public-coin puzzle
✓⇓

There exists a 3-round public-coin puzzle with perfect completeness

✓

⇓ (Assume OWF don’t exist)
There exists a 2-round public-coin puzzle with perfect completeness

✓

⇓
TFNP is hard on average

12 / 27



Step 3/4: round reduction

We want to prove:
Assuming OWF don’t exist,
a 3-round public-coin puzzle with perfect completeness =⇒
a 2-round public-coin puzzle with perfect completeness

The proof actually works for k-round to (k − 1)-round for any polynomial
k(n). For simplicity, we only consider k = 3.

13 / 27



Step 3/4: round reduction

We want to prove:
Assuming OWF don’t exist,
a 3-round public-coin puzzle with perfect completeness =⇒
a 2-round public-coin puzzle with perfect completeness

The proof actually works for k-round to (k − 1)-round for any polynomial
k(n). For simplicity, we only consider k = 3.

13 / 27



First attempt

Attacker A Challenger C

p1

r

p2

————————————————————⇓ ——————————————————————

Attacker A′ Challenger C′
r

p1, p2

C′ accepts iff C(p1, r , p2) = 1.

Perfect completeness. Trivial.
Soundness. False.
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[Babai-Moran’88] round reduction

Attacker A Challenger C

p1

r

p2

————————————————————⇓ ——————————————————————

Attacker A′ Challenger C′
r1, . . . , rm

p1, p
1
2 , . . . , p

m
2

C′ accepts iff C(p1, r i , pi2) = 1 for all i .

Perfect completeness. Trivial.
Soudness. [BM88] showed that the transformation preserves soundness in
their context of computationally-unbounded A,A′, but in our setting,
soundness is for PPT A,A′.
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Soundness of the round reduction (informal)

Attacker B Challenger C

p1

r

p2

Attacker A∗ Challenger C′
r1, . . . , rm

p1, p
1
2 , . . . , p

m
2

C′ accepts iff C(p1, r i , pi2) = 1 for all i .

Suppose a PPT A∗ breaks the soundness of the 2-round C′, we construct a
PPT B that breaks the soundness of the 3-round C.

B has randomness s = (s1, . . . , sm, z).
On the first round, B simulates (p1, p

1
2 , . . . , p

m
2 ) := A∗(s) and outputs p1.

On the third round, suppose B receives r from C. If r = s i for some i , B
can output pi2. But what if r /∈ {s1, . . . , sm}?
We want to find another transcript of A∗ and C′ in which p1, r appear.

A transcript of A∗ and C′ is a function of the randomness z of A∗ and
(r1, . . . , rm) of C′. Thus, (p1, r i ) is a function (denoted M) of them and i .

B gets (j , t1, . . . , tm, z ′) := Inv(p1, r) where Inv inverts M. (If Inv
succeeds, then t j = r .)
Then, B lets (q1, q

1
2 , . . . , q

m
2 ) := A∗(t1, . . . , tm, z ′) and outputs qj2.

If A∗ and Inv both succeed, then C(p1, r , qj2) = C(p1, tj , q
j
2) = 1.
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Soundness of the round reduction (informal, cont’d)

In the last round, B uses the inverter Inv to produce a transcript of A∗

and C′ that is consistent with (p1, r), and uses the output of A∗

corresponding to r as the output of itself.

If A∗ and Inv both succeed, then B succeeds.
But they don’t always succeed!

The inverter should take inputs from a correct distribution.
Complicated, omitted.

The inverter should produce a distribution that has low correlation
with whether A∗ succeeds.
Use distributional OWF.
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Distributional OWF

f is a distributional OWF if is is hard to sample a uniformly random
pre-image.
That is, for any PPT T ,

{(T (f (x)), f (x)) : x ← {0, 1}n} ̸≈s {(x , f (x)) : x ← {0, 1}n}.

Lemma. Existence of distributional OWF implies existence of OWF.
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Proof overview

Main result. If NP is hard on average and OWF don’t exist, then TFNP
is hard on average.

NP is hard on average
✓⇓

There exists a 2-round public-coin puzzle
✓⇓

There exists a 3-round public-coin puzzle with perfect completeness
✓⇓ (Assume OWF don’t exist)

There exists a 2-round public-coin puzzle with perfect completeness

✓

⇓
TFNP is hard on average

20 / 27



Step 4/4: TFNP-hardness-on-average from puzzles

There exists a 2-round public-coin puzzle with perfect completeness =⇒
TFNP is hard on average

Attacker A Challenger C
r

p

Straight-forward from definition.
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A caveat: infinitely-often

Main result: TFNP is hard on average in Pessiland.*

What we actually proved in the round-reduction step is, for every n, if
there exists a 3-round puzzle (with some properties) with security
parameter 1n, then there exist either OWF with security parameter 1n, or
2-round puzzles with security parameter 1n.
Therefore, even if 3-round puzzles exist for all sufficiently large n, we can
only get the following:

Either OWF exist for all sufficiently large n, or 2-round puzzles exist
for infinitely many n.

Either OWF exist for infinitely many n, or 2-round puzzles exist for all
sufficiently large n.
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Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss Johann Friedrich Pfaff

Trying to embarrass Gauss, Pfaff gives Gauss a hard proposition x ,
and asks him to either provide a proof w for x , or claim x is false.
If Gauss claims x is false, no way for Pfaff to verify!
What if Pfaff always gives Gauss a true statement so that he can
verify Gauss’ solution? Does this makes the task easier for Gauss?
This gives a promise-true NP search problem.
So the question is: are promise-true NP search problems easier than
NP search problems?
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Wait! But the title is. . . ?

Helmstedt, Holy Roman Empire, 1799.

Carl Friedrich Gauss Johann Friedrich Pfaff

The question is: are promise-true NP search problems easier than NP
search problems?

This paper proved that hard-on-average NP problems imply OWF or
hard-on-average TFNP problems.

Both inverting OWF and TFNP are promise-true!

Therefore—
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TL;DR

NO.
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