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What Dan Showed Last Time
SVL, UEOPL, Pebbling Game, SVL ⊆ PLS ∩ PPAD
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What Dan Showed Last Time
SVL, UEOPL, Pebbling Game, SVL ⊆ PLS ∩ PPAD

Definition (SVL : (S ,V , xs ,T ))

Given a DAG on U = {0, 1}n implicitly defined
by S : U → U, we also consider the promise
V : U × [T ] → {0, 1} given as

V (w , i) = 1 ⇐⇒ w = S i−1(xs).

Problem: Given a xs , find a w s.t. V (w ,T ) = 1.
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What Dan Showed Last Time
SVL, UEOPL, Pebbling Game, SVL ⊆ PLS ∩ PPAD

Lemma (SVL hardness* =⇒ hardness in
PPAD and PLS)

Recall pebbling game, PG:

PG :(S ,V , xs ,T ) → (S ′,P ′, x̃s ,C )

(Recall how PG works as well as this reduction
from Dan’s lecture last time). The point is,
(S ′,P ′, x̃s) gives an instance of SVL
(PPAD-complete) and (S ′,C , x̃s) gives an
instance of DAG on SVL (PLS-complete).

* In this talk, “hardness” means “hard on
average” – i.e. ∃ an efficient sampler of hard
instances.
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What Dan Showed Last Time
SVL, UEOPL, Pebbling Game, SVL ⊆ PLS ∩ PPAD

Remark (Why is SVL important?)

SVL as a hard instance of UEOPL implies hard
instances for both PLS and PPAD through the
aforementioned reduction. But, UEOPL is
actually much lower in the TFNP hierarchy!!

Remark (Next Steps in the Journey)

1 OWF+ VBB =⇒ SVL is hard

2 “Super strong” iOWF + “Super strong”
iO =⇒ SVL is hard

3 (Next Talk by Ashvin)
OWP+ iO =⇒ SVL hard.

4 Other stuff =⇒ SVL hard (after spring
break)
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Agenda

Theorem (Stage 1○; Idea of the Construction, Gate Way to SVL)

∃OWF+ VBB =⇒ SVL hard.

Theorem (Stage 2○, BPR Main Theorem; Outdated Analysis)

∃ “super strong” iOWF and “super strong” iO =⇒ SVL hard.

First “super strong” to mean sub-exponentially-hard

Second “super strong” to mean quasi-polynomially-hard

Theorem (Stage 3○, Ashvin’s Talk Right After; Compare to 2○)

(Next Talk by Ashvin) OWP+ iO =⇒ SVL hard.
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Why OWF?

Theorem (Recall)

OWF =⇒ PRG

=⇒ PRF

Proof of the Second Implication.

Recall the Goldreich-Goldwasser-Micali (GGM) construction of PRF using PRG.
Let G : {0, 1}s → {0, 1}n, n = 2s be a PRG. Then, we can define G0 an G1 to
respectively be the left and right halves of G , s.t. G = G0||G1.

(only two layers of a (n + 1)-layer binary tree shown)

Define the PRF as

Fk(x1x2 . . . xn) = Gxn(Gxn−1(. . . (Gx1(k)) . . .))

Then, hybrid argument follows. ■
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Why OWF?

Theorem (Recall)

OWF =⇒ PRG =⇒ PRF

Definition (Pseudo-Random Function (PRF), Informal)

PRFk(X ) is deterministically and efficiently computable given k (the secret
key), but someone without k cannot efficiently distinguish it from a truly
random function [Goldreich-Goldwasser-Micali’86].

Definition (Pseudo-Random Function (PRF), Formal)

A function f : {0, 1}n︸ ︷︷ ︸
X

× {0, 1}s︸ ︷︷ ︸
k

→ {0, 1}m is a (t, ϵ, q)-PRF︸ ︷︷ ︸
default: poly t,q, & neg ϵ

if:

Given k and X , Fk(X ) is efficiently computable.

For any t-time oracle algorithm A making at most q queries,∣∣∣∣ Pr
k←{0,1}s

[
Afk = 1

]
− Pr

f∈F

[
Af = 1

]∣∣∣∣ < ϵ

Proof of the Second Implication.

Recall the Goldreich-Goldwasser-Micali (GGM) construction of PRF using PRG.
Let G : {0, 1}s → {0, 1}n, n = 2s be a PRG. Then, we can define G0 an G1 to
respectively be the left and right halves of G , s.t. G = G0||G1.

(only two layers of a (n + 1)-layer binary tree shown)

Define the PRF as

Fk(x1x2 . . . xn) = Gxn(Gxn−1(. . . (Gx1(k)) . . .))
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What is a Virtual Black Box (VBB)?
We First Introduce Program Obfuscator

Definition (Obfuscator, informal)

Obfuscator, not unlike a compiler, alters the look of a program such that
the program becomes unintelligible (i.e. you won’t know the program
fully if it has been obfuscated) while keeping its functionalities.

In summary, general obfuscators require:

Functionality: For any C ∈ C,

Pr
x
[O(C )(x) = C (x)] = 1.

Indistinguishability: O(C ) should be unintelligible beyond just the
input / output, serving practically as an oracle / blackbox (and this
obfuscation should be done efficiently, with at most a polynomial
blow-up).
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What is a VBB?
Define Virtual Black Box

Definition (Virtual Black Box, informal)

An ideal obfusctor is so powerful that the obfuscated program would
practically become a (virtual) black box, i.e. you would know nothing
about it other than its input and output.

Functionality: For any C ∈ C,

Pr
x
[O(C )(x) = C (x)] = 1.

Security: For any PPT D, there exists a PPT SD such that∣∣∣Pr [D(O(C )) = 1]− Pr
[
SC
D

(
1λ
)
= 1

]∣∣∣ ≤ ε.
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What is a VBB?
What We Already Know

Theorem ([Barak et al 2001]; VBB cannot exist for all circuits)

Constructive proof: https://en.wikipedia.org/wiki/Black-box obfuscation

∗ VBB is a very strong assumption. This theorem is to say that VBB may
be too strong as an assumption.

However, this is a general disproof, it is
(probably) not known if VBB is constructible for the circuits used in the
SVL construction.

So, reduction time!
Well, a different kind of reduction...
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Agenda

Theorem (Stage 1○; Idea of the Construction, Gate Way to SVL)

∃OWF+ VBB =⇒ SVL hard.

Theorem (Stage 2○, BPR Main Theorem; Outdated Analysis)

∃ “super strong” iOWF and “super strong” iO =⇒ SVL hard.

First “super strong” to mean sub-exponentially-hard

Second “super strong” to mean quasi-polynomially-hard

Theorem (Stage 3○, Ashvin’s Talk Right After; Compare to 2○)

(Next Talk by Ashvin) OWP+ iO =⇒ SVL hard.
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Reduce VBB to a hard instance of SVL assuming PRF

Definition (SVL)

Recall that SVL can be defined by a 4-tuple: (S ,V , xs ,T ) [we take
xs = 0n from now on].

Remark (When is SVL hard?)

A hard instance of SVL is one with S (successor circuit) s.t. it is hard to
fast forward. Particularly, finding σN should take 2Ω(n) steps, where
N = 2n (exponentially-sized DAG).
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Reduce VBB to a hard instance of SVL assuming PRF
Construction of the SVL hard problem

We apply fk ∈ PRF, σi = fk(i) , to define Sk ,Vk :

Sk(i , σ) =


“sink” if (i , σ) = (N, σN)

(i + 1, σi+1) if (i , σ) = (i , σi )

⊥ o.w. [i.e. making it junk]

Vk(i , (j , x)) =

{
1 if i = j and x = fk(i)

0 o.w.

(1)

Then, we obfuscate (1) to get

S = VBB(Sk); xs = (1, fk(1)),V = VBB(Vk)

So, we already have our SVL instance, (S ,VBB(V ), xs ,N) (T = N = 2n,
and N was defined as the number of nodes in the DAG in the last slide).
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Reduce VBB to a hard instance of SVL assuming PRF
Show the constructed SVL instance is indeed hard (security analysis)

Assume to the contrary that (the constructed SVL is not hard) ∃A which is
a PPT solver for our obfuscated instance (S = VBB(Sk),V = VBB(Vk),
xs ,N). Then, recalling security definition of VBB:∣∣∣Pr [D(O(C )) = 1]− Pr

[
SC
D

(
1λ
)
= 1

]∣∣∣ ≤ ε,

we must have A′ that solves the SVL instance (Sk ,Vk , xs ,N) with only
oracle access to Sk and Vk (non-neg ± neg =⇒ non-neg). For example,
we have ∣∣∣Pr [D(O(Sk)) = 1]− Pr

[
A

′Sk
D

(
1λ
)
= 1

]∣∣∣ ≤ ε,

and analogously for Vk .

Next, the goal is to find a distinguisher D that necessarily breaks the
security requirement of PRF using A′.
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Reduce VBB to a hard instance of SVL assuming PRF
Show the constructed SVL instance is indeed hard (security analysis)

Since D can fully simulate A′ (both are PPTs) on SVL which can in turn
simulate Sk ,Vk entirely by doing this (WLOG, say we want to simulate
Sk): We let S ′k do the same thing as Sk , other than whenever Sk
computes fk , in which case we query the f (i) oracle instead, where f (i) is
the function which we want to decide is truly random or a PRF.

Since A solves VBB(Sk) and VBB(Vk), we find the first instance where

A hasn’t queried S(j − 1, x) or V (j − 1, x).

But A has a valid response for S(j , y).

Finally, D decides that f (i) is

{
a PRF, if fk(j) = y

a truly random function, if fk(j) ̸= y

[∗Note: Here, we need to argue with the fact that fk(j) = y for negligible
probability when it’s truly random, given how much bigger F is.]
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Reduce VBB to a hard instance of SVL assuming PRF
Show the constructed SVL instance is indeed hard (security analysis)

Since N is greater than the runtime of A′, there must be an i > 1 such
that A′ outputs or queries an oracle on (i ,PRF (i)) but never queries
(i − 1,PRF (i − 1)). This violates the security of PRF. (More formally, we
can construct an adversary B f for PRF that simulates A′ up to the point
that A′ outputs or queries an oracle on (i , x), and decide whether f is a
PRF according to whether x = f (i).)
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Agenda

Theorem (Stage 1○; Idea of the Construction, Gate Way to SVL)

∃OWF+ VBB =⇒ SVL hard.
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Second “super strong” to mean quasi-polynomially-hard

Theorem (Stage 3○, Ashvin’s Talk Right After; Compare to 2○)

(Next Talk by Ashvin) OWP+ iO =⇒ SVL hard.
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What is a VBB?
What We Already Know

Theorem ([Barak et al 2001]; VBB cannot exist for all circuits)

Constructive proof: https://en.wikipedia.org/wiki/Black-box obfuscation

∗ VBB is a very strong assumption. This theorem is to say that VBB may
be too strong as an assumption.

However, this is a general disproof, it is
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Indistinguishable Obfuscator (iO)

Remark

Showing

“super strong” iOWF+ “super strong” iO =⇒ SVL hardness

is quite good!
There was a construction of iO in [Jain-Lin-Sahai’21,22] based on three
“well-founded” assumptions. Plus, iO implies deniable encryption,
functional encryption, multi-party key exchange, time-lock puzzles,
trapdoor permutations, non-interactive ZK, verifiable computation, etc.

Remark

However, the BPR method used is quite evolved and it was soon
superseded by a better result which Ashvin will present right away, so this
presentation is leaving the whole proof in “Appendix A”, and only focusing
on relevant parts of the proof here.
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Relevant Definition: Puncturable PRF

Recall the definition of PRF

Definition (Pseudo-Random Function (PRF), Formal)

A function f : {0, 1}n︸ ︷︷ ︸
X

× {0, 1}s︸ ︷︷ ︸
k

→ {0, 1}m is a (t, ϵ, q)-PRF if:

Given k and X , Fk(X ) is efficiently computable.

For any t-time oracle algorithm A making at most q queries,∣∣∣∣ Pr
k←{0,1}s

[
Afk

]
− Pr

f ∈F

[
Af

]∣∣∣∣ < ϵ
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Relevant Definition: Puncturable PRF

and the GGM construction of PRF from PRG

(only two layers of a (n + 1)-layer binary tree shown)
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Relevant Definition: Puncturable PRF

Then, a puncturable PRF is a PRF that can be evaluated everywhere but
at x , which has the following GGM construction:

(only four layers of a (n + 1)-layer binary tree shown)
*Notice how only n neighbors needed to specify

16 / 29



Relevant Lemma
iO of two circuits different for only one output is indistinguishable

Lemma (10)

Let A(x) be a program, and Br ,z(x) =

{
z if x = r

A(x) otherwise
. Then, for any

random r and ∀z , iO(A) ≈ iO(Br ,z) [“indistinguishable under iO”].
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Rest of the Proof

The rest of the proof for this stage uses the same construction as the first
stage, but, since we need to obfuscate Sk ,Vk using iO now, instead of
VBB, we need to alter the security analysis, which is where puncturable
PRF and lemma 11 come in, along with other things (we formulated
puncturable PRF and lemma 11 because they are relevant later).

For details about the rest of the proof (where it’s different to stage 1
proof), please see “Appendix A” (it’s a hybrid argument).

For instance, “super-polynomial” actually comes from this analysis. The
proof involves a “walk” between different hybrids, where in each hybrid
another point is punctured, and there is a total of super polynomially
many hybrids necessary for the proof to go through.
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Agenda
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Outro

This is it for what the presentation has to say about BPR. THANKS!

Special shout-outs to the teaching staff, Yizhi, Ashvin for their input,
comments, intuitions.
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Appendix A: iOWF and iO =⇒ hard instance of SVL

Idea

Reduce iO to a hard instance of SVL, defined by (S ,V , xs ,T ).

Remark (When is SVL hard?)

A hard instance of SVL is one with S (successor circuit) s.t. it is hard to
fast forward. Particularly, finding σN should take 2Ω(n) steps, where
N = 2n (exponentially-sized DAG).

Idea

So, to reduce iO to a hard instance of SVL is to construct S ,V that make
finding σN a 2Ω(n)-time problem.
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Appendix A: Reduce iO to a hard instance of SVL

Definition (Recall, PRF)

PRFk(X ) is deterministically and efficiently computable given k (the
secret key), but someone without k cannot efficiently distinguish it from
a truly random function [Goldreich-Goldwasser-Micali’86].
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Reduce iO to a hard instance of SVL

We apply fk ∈ PRF, σi = fk(i) , to define Sk ,Vk :

Sk(i , σ) =


“sink” if (i , σ) = (N, σN)

(i + 1, σi+1) if (i , σ) = (i , σi )

⊥ o.w. [i.e. making it junk]

Vk(i , (j , x)) =

{
1 if i = j and x = fk(i)

0 o.w.

(2)

Then, we obfuscate (2) to get

S = iO(Sk);V = iO(Vk)

so that we won’t have a way to know k for S ,V to be efficiently
computable and the only way to get to the end of the graph is by
computing S super-polynomially many times.
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Appendix A: Reduce iO to a hard instance of SVL

Now, suppose we have S ′ = O(S ′k) and V ′ = O(V ′k) that compute a
similar graph, except that graph has a self-loop at the end instead of a
sink:

Idea

If there is an efficient way to get to σN , we can simply find σN and check
whether it is a self-loop or a sink, which will make the two graphs not
indistinguishable. That is, the only way to make it indistinguishable is for
getting to σN to be hard. So, it suffices to show that the programs
described by S ,V and by S ′,V ′ are indistinguishable in order to show the
desired hardness.
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Appendix A: Reduce iO to a hard instance of SVL

Idea

Show the programs described by S ,V and by S ′,V ′ are indistinguishable.

Lemma (14)

Let A(x) be a program, and Br ,z(x) =

{
z if x = r

A(x) otherwise
. Then, for any

random r and ∀z , iO(A) ≈ iO(Br ,z) [“indistinguishable under iO”].

Example

We can use it by planting r as a unique solution for a hard problem. We
take a injective PRG, f , then f (r) is a unique solution of r . Since the
PRG is injective and an expanding when, when sampling from the image
of the PRG, you will get something without no preimage, except for ϵ(·)
probability.
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Appendix A: Reduce iO to a hard instance of SVL

First, we only show S and S ′, i.e. the way going forward:

(Step 1): Pick a random edge and remove.

(Step 2): Pick a random node w/ in-degree 0 and make it a self-loop.

Repeat step 2 until we reach the end of the graph.

It has a runtime of t(step 2) · O(N = 2n) , assuming a sub-exponentially

secure iO. Note that this is called a “hybrid argument.”

Corollary (Step 1 change is indistinguishable)

Direct result of lemma 11, since it is equivalent of changing

Sk(i , σ)

to

S ′k,r (i , σ) =

{
⊥ if i = r

Sk(i , σ) otherwise
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Appendix A: Reduce iO to a hard instance of SVL

Definition (puncturable PRFs)

Let n, k be polynomially bounded functions, then

PRF =
{
PRFS : {0, 1}n(|x|) → {0, 1}|x| | S ∈ {0, 1}k(|x|), |x| ∈ N

}
associated with an efficient key sampler KPRF is puncturable if ∃ a poly-time puncturing algorithm Punc that takes as in put

a key S , and a point x∗, and output a punctured key S{x∗}, so that the following conditions are satisfied:

1 (Functionality preserved) For every x∗ ∈ {0, 1}n(|x|),

Pr
S←K

PRF
(
1|x|

)
[
∀x ̸= x∗ : PRFS (x) = PRFS{x∗}(x) | S{x∗} = Punc(S, x∗)

]
= 1

2 (Indistinguishability at punctured point) For any poly-size distinguisher D, ∃ negligible ϵ(·), s.t. ∀|x| ∈ N, and
x∗ ∈ {0, 1}n(|x|):

∣∣Pr[D(x∗, S{x∗}, PRFS (x
∗)) = 1] − Pr[D(x∗, S{x∗}, u) = 1]

∣∣ ≤ ϵ(|x|)
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Appendix A: Reduce iO to a hard instance of SVL

Corollary (19, Step 2 change is indistinguishable)

The choice of in-degree 0 nodes is not truly random, as it can only be the
ones that have already been made into a loop. Thus, we use puncturable
pseudo-random functions for defining σi = fk(i), so that on some
position i that has been punctured, it will still appear random even given
the key k . Since now we have the true randomness after puncturing (r in
place of σi , independent from rest of the program), we can just apply the
lemma directly again similar to the previously corollary.

Now that we showed S and S ′ are indistinguishable, we consider V and
V ′: the hardness of computing V or V ′ is not affected by the end node
being a sink or a self-loop, so the fact that key, k , is obfuscated gives the
hardness for both, and they should agree everywhere given how we defined
their respective graphs.
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Appendix A: Reduce iO to a hard instance of SVL

Summary

In summary, we have used iO to construct an instance of SVL,
(S ,V , xs ,T ) (xs ,T follow conveniently from the set-up, so we focused on
constructing S ,V ). We have shown that S ,V are hard after applying
sub-exponentially secure iO on Sk ,Vk which assume the existence of
PRFs. In this case, it takes a super-polynomial runtime to solve this
constructed instance of SVL, making it a hard instance of SVL. In other
words,

“super strong” iOWF and “super strong” iO =⇒ a hard instance of SVL
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