On the Cryptographic Hardness of Finding a Nash Equilibrium

Nir Bitansky, Omer Paneth \& Alon Rosen
Presented by Mark Chen \& Yizhi Huang

2024-03-07

What Dan Showed Last Time

 SVL, UEOPL, Pebbling Game, SVL \subseteq PLS \cap PPAD

What Dan Showed Last Time

SVL, UEOPL, Pebbling Game, SVL \subseteq PLS \cap PPAD

Definition (SVL: $\left(S, V, x_{s}, T\right)$)
Given a DAG on $U=\{0,1\}^{n}$ implicitly defined by $S: U \rightarrow U$, we also consider the promise
$V: U \times[T] \rightarrow\{0,1\}$ given as

$$
V(w, i)=1 \Longleftrightarrow w=S^{i-1}\left(x_{s}\right) .
$$

Problem: Given a x_{s}, find a w s.t. $V(w, T)=1$.

What Dan Showed Last Time

 SVL, UEOPL, Pebbling Game, SVL \subseteq PLS \cap PPAD

Lemma (SVL hardness* \Longrightarrow hardness in PPAD and PLS)
Recall pebbling game, PG:

$$
\mathbf{P G}:\left(S, V, x_{s}, T\right) \rightarrow\left(S^{\prime}, P^{\prime}, \widetilde{x}_{s}, C\right)
$$

(Recall how PG works as well as this reduction from Dan's lecture last time). The point is, ($S^{\prime}, P^{\prime}, \widetilde{x}_{s}$) gives an instance of SVL (PPAD-complete) and ($S^{\prime}, C, \widetilde{x}_{s}$) gives an instance of DAG on SVL (PLS-complete).

* In this talk, "hardness" means "hard on average" - i.e. \exists an efficient sampler of hard instances.

What Dan Showed Last Time

 SVL, UEOPL, Pebbling Game, SVL \subseteq PLS \cap PPADRemark (Why is SVL important?)
SVL as a hard instance of UEOPL implies hard instances for both PLS and PPAD through the aforementioned reduction. But, UEOPL is actually much lower in the TFNP hierarchy!!

Remark (Next Steps in the Journey)
(1) OWF + VBB \Longrightarrow SVL is hard
(2) "Super strong" iOWF + "Super strong" $\mathrm{iO} \Longrightarrow$ SVL is hard
(3) (Next Talk by Ashvin) OWP $+i \mathcal{O} \Longrightarrow$ SVL hard.
(- Other stuff \Longrightarrow SVL hard (after spring break)

Agenda

Theorem (Stage (1); Idea of the Construction, Gate Way to SVL) $\exists \mathrm{OWF}+\mathrm{VBB} \Longrightarrow$ SVL hard.

Agenda

> Theorem (Stage (1); Idea of the Construction, Gate Way to SVL) $\exists \mathbf{O W F}+\mathbf{V B B} \Longrightarrow \mathbf{S V L}$ hard.

Theorem (Stage (2), BPR Main Theorem; Outdated Analysis)
\exists "super strong" iOWF and "super strong" $i \mathcal{O} \Longrightarrow$ SVL hard.

- First "super strong" to mean sub-exponentially-hard
- Second "super strong" to mean quasi-polynomially-hard

Agenda

Theorem (Stage (1); Idea of the Construction, Gate Way to SVL) $\exists \mathbf{O W F}+$ VBB \Longrightarrow SVL hard.

Theorem (Stage (2), BPR Main Theorem; Outdated Analysis)
\exists "super strong" iOWF and "super strong" $i \mathcal{O} \Longrightarrow$ SVL hard.

- First "super strong" to mean sub-exponentially-hard
- Second "super strong" to mean quasi-polynomially-hard

Theorem (Stage (3), Ashvin's Talk Right After; Compare to (2)) (Next Talk by Ashvin) OWP $+i \mathcal{O} \Longrightarrow$ SVL hard.

Agenda

Theorem (Stage (1); Idea of the Construction, Gate Way to SVL) $\exists \mathbf{O W F}+$ VBB \Longrightarrow SVL hard.

Why OWF?

Theorem (Recall)
OWF \Longrightarrow PRG

Why OWF?

Theorem (Recall)

OWF \Longrightarrow PRG \Longrightarrow PRF

Definition (Pseudo-Random Function (PRF), Informal)
$\mathbf{P R F}_{k}(X)$ is deterministically and efficiently computable given k (the secret key), but someone without k cannot efficiently distinguish it from a truly random function [Goldreich-Goldwasser-Micali'86].

Definition (Pseudo-Random Function (PRF), Formal)
A function $f: \underbrace{\{0,1\}^{n}}_{x} \times \underbrace{\{0,1\}^{s}}_{k} \rightarrow\{0,1\}^{m}$ is $\underbrace{\text { a }(t, \epsilon, q) \text {-PRF }}_{\text {default: poly } t, q, \& \text { neg } \epsilon}$ if:

- Given k and $X, F_{k}(X)$ is efficiently computable.
- For any t-time oracle algorithm A making at most q queries,

$$
\left|\operatorname{Pr}_{k \leftarrow\{0,1\}^{s}}\left[A^{f_{k}}=1\right]-\operatorname{Pr}_{f \in \mathcal{F}}\left[A^{f}=1\right]\right|<\epsilon
$$

Why OWF?

Theorem (Recall)

OWF \Longrightarrow PRG \Longrightarrow PRF

Proof of the Second Implication.
Recall the Goldreich-Goldwasser-Micali (GGM) construction of PRF using PRG. Let $G:\{0,1\}^{s} \rightarrow\{0,1\}^{n}, n=2 s$ be a PRG. Then, we can define G_{0} an G_{1} to respectively be the left and right halves of G, s.t. $G=G_{0} \| G_{1}$.

Why OWF?

Theorem (Recall)

OWF \Longrightarrow PRG \Longrightarrow PRF

Proof of the Second Implication.
Recall the Goldreich-Goldwasser-Micali (GGM) construction of PRF using PRG. Let $G:\{0,1\}^{s} \rightarrow\{0,1\}^{n}, n=2 s$ be a PRG. Then, we can define G_{0} an G_{1} to respectively be the left and right halves of G, s.t. $G=G_{0} \| G_{1}$.

Define the PRF as

$$
F_{k}\left(x_{1} x_{2} \ldots x_{n}\right)=G_{x_{n}}\left(G_{x_{n-1}}\left(\ldots\left(G_{x_{1}}(k)\right) \ldots\right)\right)
$$

Why OWF?

Theorem (Recall)

OWF \Longrightarrow PRG \Longrightarrow PRF

Proof of the Second Implication.
Recall the Goldreich-Goldwasser-Micali (GGM) construction of PRF using PRG. Let $G:\{0,1\}^{s} \rightarrow\{0,1\}^{n}, n=2 s$ be a PRG. Then, we can define G_{0} an G_{1} to respectively be the left and right halves of G, s.t. $G=G_{0} \| G_{1}$.

Define the PRF as

$$
F_{k}\left(x_{1} x_{2} \ldots x_{n}\right)=G_{x_{n}}\left(G_{x_{n-1}}\left(\ldots\left(G_{x_{1}}(k)\right) \ldots\right)\right)
$$

Then, hybrid argument follows.

What is a Virtual Black Box (VBB)?

Definition (Obfuscator, informal)

Obfuscator, not unlike a compiler, alters the look of a program such that the program becomes unintelligible (i.e. you won't know the program fully if it has been obfuscated) while keeping its functionalities.

In summary, general obfuscators require:

- Functionality: For any $C \in \mathcal{C}$,

$$
\underset{x}{\operatorname{Pr}}[\mathcal{O}(C)(x)=C(x)]=1 .
$$

- Indistinguishability: $O(C)$ should be unintelligible beyond just the input / output, serving practically as an oracle / blackbox (and this obfuscation should be done efficiently, with at most a polynomial blow-up).

What is a VBB?

Define Virtual Black Box

Definition (Virtual Black Box, informal)
An ideal obfusctor is so powerful that the obfuscated program would practically become a (virtual) black box, i.e. you would know nothing about it other than its input and output.

- Functionality: For any $C \in \mathcal{C}$,

$$
\underset{x}{\operatorname{Pr}}[\mathcal{O}(C)(x)=C(x)]=1
$$

- Security: For any PPT D, there exists a PPT S_{D} such that

$$
\left|\operatorname{Pr}[D(\mathcal{O}(C))=1]-\operatorname{Pr}\left[S_{D}^{C}\left(1^{\lambda}\right)=1\right]\right| \leq \varepsilon
$$

What is a VBB?

What We Already Know

Theorem ([Barak et al 2001]; VBB cannot exist for all circuits)
Constructive proof: https://en.wikipedia.org/wiki/Black-box_obfuscation

* VBB is a very strong assumption. This theorem is to say that VBB may be too strong as an assumption.

What is a VBB?

What We Already Know

Theorem ([Barak et al 2001]; VBB cannot exist for all circuits)
Constructive proof: https://en.wikipedia.org/wiki/Black-box_obfuscation

* VBB is a very strong assumption. This theorem is to say that VBB may be too strong as an assumption. However, this is a general disproof, it is (probably) not known if VBB is constructible for the circuits used in the SVL construction.

So, reduction time!

What is a VBB?

What We Already Know

Theorem ([Barak et al 2001]; VBB cannot exist for all circuits)
Constructive proof: https://en.wikipedia.org/wiki/Black-box_obfuscation

* VBB is a very strong assumption. This theorem is to say that VBB may be too strong as an assumption. However, this is a general disproof, it is (probably) not known if VBB is constructible for the circuits used in the SVL construction.

So, reduction time!
Well, a different kind of reduction...

Agenda

Theorem (Stage (1); Idea of the Construction, Gate Way to SVL) $\exists \mathbf{O W F}+$ VBB \Longrightarrow SVL hard.

Reduce VBB to a hard instance of SVL assuming PRF

Definition (SVL)

Recall that SVL can be defined by a 4-tuple: $\left(S, V, x_{s}, T\right)$ [we take $x_{s}=0^{n}$ from now on].

Remark (When is SVL hard?)
A hard instance of SVL is one with S (successor circuit) s.t. it is hard to fast forward. Particularly, finding σ_{N} should take $2^{\Omega(n)}$ steps, where $N=2^{n}$ (exponentially-sized DAG).

Reduce VBB to a hard instance of SVL assuming PRF

Construction of the SVL hard problem

We apply $f_{k} \in \mathbf{P R F}, \sigma_{i}=f_{k}(i)$, to define S_{k}, V_{k} :

$$
\begin{align*}
S_{k}(i, \sigma) & =\left\{\begin{array}{l}
\text { "sink" if }(i, \sigma)=\left(N, \sigma_{N}\right) \\
\left(i+1, \sigma_{i+1}\right) \text { if }(i, \sigma)=\left(i, \sigma_{i}\right) \\
\perp \text { o.w. [i.e. making it junk] }
\end{array}\right. \tag{1}\\
V_{k}(i,(j, x)) & =\left\{\begin{array}{l}
1 \text { if } i=j \text { and } x=f_{k}(i) \\
0 \text { o.w. }
\end{array}\right.
\end{align*}
$$

Then, we obfuscate (1) to get

$$
S=V B B\left(S_{k}\right) ; x_{s}=\left(1, f_{k}(1)\right), V=V B B\left(V_{k}\right)
$$

So, we already have our SVL instance, $\left(S, V B B(V), x_{s}, N\right)\left(T=N=2^{n}\right.$, and N was defined as the number of nodes in the DAG in the last slide).

Reduce VBB to a hard instance of SVL assuming PRF

Show the constructed SVL instance is indeed hard (security analysis)
Assume to the contrary that (the constructed SVL is not hard) $\exists A$ which is a PPT solver for our obfuscated instance $\left(S=\operatorname{VBB}\left(S_{k}\right), V=V B B\left(V_{k}\right)\right.$, $\left.x_{s}, N\right)$. Then, recalling security definition of VBB:

$$
\left|\operatorname{Pr}[D(\mathcal{O}(C))=1]-\operatorname{Pr}\left[S_{D}^{C}\left(1^{\lambda}\right)=1\right]\right| \leq \varepsilon
$$

we must have A^{\prime} that solves the SVL instance $\left(S_{k}, V_{k}, x_{s}, N\right)$ with only oracle access to S_{k} and V_{k} (non-neg \pm neg \Longrightarrow non-neg). For example, we have

$$
\left|\operatorname{Pr}\left[D\left(\mathcal{O}\left(S_{k}\right)\right)=1\right]-\operatorname{Pr}\left[A_{D}^{\prime} S_{k}\left(1^{\lambda}\right)=1\right]\right| \leq \varepsilon
$$

and analogously for V_{k}.
Next, the goal is to find a distinguisher D that necessarily breaks the security requirement of PRF using A^{\prime}.

Reduce VBB to a hard instance of SVL assuming PRF

 Show the constructed SVL instance is indeed hard (security analysis)Since D can fully simulate A^{\prime} (both are PPTs) on SVL which can in turn simulate S_{k}, V_{k} entirely by doing this (WLOG, say we want to simulate S_{k}): We let S_{k}^{\prime} do the same thing as S_{k}, other than whenever S_{k} computes f_{k}, in which case we query the $f(i)$ oracle instead, where $f(i)$ is the function which we want to decide is truly random or a PRF.

Since A solves $\operatorname{VBB}\left(S_{k}\right)$ and $\operatorname{VBB}\left(V_{k}\right)$, we find the first instance where

- A hasn't queried $S(j-1, x)$ or $V(j-1, x)$.
- But A has a valid response for $S(j, y)$.

Finally, D decides that $f(i)$ is $\left\{\begin{array}{l}\text { a } \mathbf{P R F}, \text { if } f_{k}(j)=y \\ \text { a truly random function, if } f_{k}(j) \neq y\end{array}\right.$ $\left[*\right.$ Note: Here, we need to argue with the fact that $f_{k}(j)=y$ for negligible probability when it's truly random, given how much bigger \mathcal{F} is.]

Reduce VBB to a hard instance of SVL assuming PRF

Show the constructed SVL instance is indeed hard (security analysis)

Since N is greater than the runtime of A^{\prime}, there must be an $i>1$ such that A^{\prime} outputs or queries an oracle on ($\left.i, \operatorname{PRF}(i)\right)$ but never queries ($i-1, \operatorname{PRF}(i-1)$). This violates the security of PRF. (More formally, we can construct an adversary B^{f} for PRF that simulates A^{\prime} up to the point that A^{\prime} outputs or queries an oracle on (i, x), and decide whether f is a PRF according to whether $x=f(i)$.)

Agenda

> Theorem (Stage (1); Idea of the Construction, Gate Way to SVL) $\exists \mathbf{O W F}+\mathbf{V B B} \Longrightarrow \mathbf{S V L}$ hard.

Theorem (Stage (2), BPR Main Theorem; Outdated Analysis)
\exists "super strong" iOWF and "super strong" $i \mathcal{O} \Longrightarrow$ SVL hard.

- First "super strong" to mean sub-exponentially-hard
- Second "super strong" to mean quasi-polynomially-hard

What is a VBB?

What We Already Know

Theorem ([Barak et al 2001]; VBB cannot exist for all circuits)
Constructive proof: https://en.wikipedia.org/wiki/Black-box_obfuscation

* VBB is a very strong assumption. This theorem is to say that VBB may be too strong as an assumption.

Indistinguishable Obfuscator (iO)

Remark

Showing

$$
\text { "super strong" iOWF + "super strong" iO } \Longrightarrow \text { SVL hardness }
$$

is quite good!
There was a construction of $i \mathcal{O}$ in [Jain-Lin-Sahai'21,22] based on three "well-founded" assumptions. Plus, iO implies deniable encryption, functional encryption, multi-party key exchange, time-lock puzzles, trapdoor permutations, non-interactive ZK, verifiable computation, etc.

Indistinguishable Obfuscator (iO)

Remark

Showing

$$
\text { "super strong" iOWF + "super strong" iO } \Longrightarrow \text { SVL hardness }
$$

is quite good!

There was a construction of $i \mathcal{O}$ in [Jain-Lin-Sahai'21,22] based on three "well-founded" assumptions. Plus, iO implies deniable encryption, functional encryption, multi-party key exchange, time-lock puzzles, trapdoor permutations, non-interactive ZK, verifiable computation, etc.

Remark

However, the BPR method used is quite evolved and it was soon superseded by a better result which Ashvin will present right away, so this presentation is leaving the whole proof in "Appendix A", and only focusing on relevant parts of the proof here.

Relevant Definition: Puncturable PRF

Recall the definition of PRF
Definition (Pseudo-Random Function (PRF), Formal)
A function $f: \underbrace{\{0,1\}^{n}}_{x} \times \underbrace{\{0,1\}^{s}}_{k} \rightarrow\{0,1\}^{m}$ is a (t, ϵ, q)-PRF if:

- Given k and $X, F_{k}(X)$ is efficiently computable.
- For any t-time oracle algorithm A making at most q queries,

$$
\left|\operatorname{Pr}_{k \leftarrow\{0,1\}^{s}}\left[A^{f_{k}}\right]-\operatorname{Pr}_{f \in \mathcal{F}}\left[A^{f}\right]\right|<\epsilon
$$

Relevant Definition: Puncturable PRF

and the GGM construction of PRF from PRG

Relevant Definition: Puncturable PRF

Then, a puncturable PRF is a PRF that can be evaluated everywhere but at x, which has the following GGM construction:

Relevant Lemma

$i \mathcal{O}$ of two circuits different for only one output is indistinguishable

Lemma (10)
Let $A(x)$ be a program, and $B_{r, z}(x)=\left\{\begin{array}{l}z \text { if } x=r \\ A(x) \text { otherwise }\end{array}\right.$. Then, for any random r and $\forall z, i \mathcal{O}(A) \approx i \mathcal{O}\left(B_{r, z}\right)$ ["indistinguishable under $i \mathcal{O}$ "].

Rest of the Proof

The rest of the proof for this stage uses the same construction as the first stage, but, since we need to obfuscate S_{k}, V_{k} using $i \mathcal{O}$ now, instead of VBB, we need to alter the security analysis, which is where puncturable PRF and lemma 11 come in, along with other things (we formulated puncturable PRF and lemma 11 because they are relevant later).

For details about the rest of the proof (where it's different to stage 1 proof), please see "Appendix A" (it's a hybrid argument).

For instance, "super-polynomial" actually comes from this analysis. The proof involves a "walk" between different hybrids, where in each hybrid another point is punctured, and there is a total of super polynomially many hybrids necessary for the proof to go through.

Agenda

Theorem (Stage (1); Idea of the Construction, Gate Way to SVL) $\exists \mathbf{O W F}+$ VBB \Longrightarrow SVL hard.

Theorem (Stage (2), BPR Main Theorem; Outdated Analysis)
\exists "super strong" iOWF and "super strong" $i \mathcal{O} \Longrightarrow$ SVL hard.

- First "super strong" to mean sub-exponentially-hard
- Second "super strong" to mean quasi-polynomially-hard

Theorem (Stage (3), Ashvin's Talk Right After; Compare to (2)) (Next Talk by Ashvin) OWP $+i \mathcal{O} \Longrightarrow$ SVL hard.

Outro

This is it for what the presentation has to say about BPR. THANKS!
Special shout-outs to the teaching staff, Yizhi, Ashvin for their input, comments, intuitions.

Outro

This is it for what the presentation has to say about BPR. THANKS!
Special shout-outs to the teaching staff, Yizhi, Ashvin for their input, comments, intuitions.

Appendix A: iOWF and $i \mathcal{O} \Longrightarrow$ hard instance of SVL

Idea
Reduce $i \mathcal{O}$ to a hard instance of $\mathbf{S V L}$, defined by $\left(S, V, x_{s}, T\right)$.

Appendix A: iOWF and $i \mathcal{O} \Longrightarrow$ hard instance of SVL

Idea
Reduce $i \mathcal{O}$ to a hard instance of $\mathbf{S V L}$, defined by $\left(S, V, x_{s}, T\right)$.

Remark (When is SVL hard?)
A hard instance of SVL is one with S (successor circuit) s.t. it is hard to fast forward. Particularly, finding σ_{N} should take $2^{\Omega(n)}$ steps, where $N=2^{n}$ (exponentially-sized DAG).

Appendix A: iOWF and $i \mathcal{O} \Longrightarrow$ hard instance of SVL

Idea
Reduce $i \mathcal{O}$ to a hard instance of $\mathbf{S V L}$, defined by $\left(S, V, x_{s}, T\right)$.

Remark (When is SVL hard?)
A hard instance of SVL is one with S (successor circuit) s.t. it is hard to fast forward. Particularly, finding σ_{N} should take $2^{\Omega(n)}$ steps, where $N=2^{n}$ (exponentially-sized DAG).

Idea
So, to reduce $i \mathcal{O}$ to a hard instance of SVL is to construct S, V that make finding σ_{N} a $2^{\Omega(n)}$-time problem.

Appendix A: Reduce $i \mathcal{O}$ to a hard instance of SVL

Definition (Recall, PRF)

$\mathbf{P R F}_{k}(X)$ is deterministically and efficiently computable given k (the secret key), but someone without k cannot efficiently distinguish it from a truly random function [Goldreich-Goldwasser-Micali'86].

Reduce $i \mathcal{O}$ to a hard instance of SVL

We apply $f_{k} \in \mathbf{P R F}, \sigma_{i}=f_{k}(i)$, to define S_{k}, V_{k} :

$$
\begin{align*}
S_{k}(i, \sigma) & =\left\{\begin{array}{l}
\text { "sink" if }(i, \sigma)=\left(N, \sigma_{N}\right) \\
\left(i+1, \sigma_{i+1}\right) \text { if }(i, \sigma)=\left(i, \sigma_{i}\right) \\
\perp \text { o.w. }[\text { i.e. making it junk] }
\end{array}\right. \tag{2}\\
V_{k}(i,(j, x)) & =\left\{\begin{array}{l}
1 \text { if } i=j \text { and } x=f_{k}(i) \\
0 \text { o.w. }
\end{array}\right.
\end{align*}
$$

Then, we obfuscate (2) to get

$$
S=i \mathcal{O}\left(S_{k}\right) ; V=i \mathcal{O}\left(V_{k}\right)
$$

so that we won't have a way to know k for S, V to be efficiently computable and the only way to get to the end of the graph is by computing S super-polynomially many times.

Appendix A: Reduce $i \mathcal{O}$ to a hard instance of SVL

Now, suppose we have $S^{\prime}=O\left(S_{k}^{\prime}\right)$ and $V^{\prime}=O\left(V_{k}^{\prime}\right)$ that compute a similar graph, except that graph has a self-loop at the end instead of a sink:

Idea
If there is an efficient way to get to σ_{N}, we can simply find σ_{N} and check whether it is a self-loop or a sink, which will make the two graphs not indistinguishable. That is, the only way to make it indistinguishable is for getting to σ_{N} to be hard. So, it suffices to show that the programs described by S, V and by S^{\prime}, V^{\prime} are indistinguishable in order to show the desired hardness.

Appendix A: Reduce $i \mathcal{O}$ to a hard instance of SVL

Idea

Show the programs described by S, V and by S^{\prime}, V^{\prime} are indistinguishable.
Lemma (14)
Let $A(x)$ be a program, and $B_{r, z}(x)=\left\{\begin{array}{l}z \text { if } x=r \\ A(x) \text { otherwise }\end{array}\right.$. Then, for any random r and $\forall z, i \mathcal{O}(A) \approx i \mathcal{O}\left(B_{r, z}\right)$ ["indistinguishable under $i \mathcal{O}$ "].

Example

We can use it by planting r as a unique solution for a hard problem. We take a injective PRG, f, then $f(r)$ is a unique solution of r. Since the PRG is injective and an expanding when, when sampling from the image of the PRG, you will get something without no preimage, except for $\epsilon(\cdot)$ probability.

Appendix A: Reduce $i \mathcal{O}$ to a hard instance of SVL

First, we only show S and S^{\prime}, i.e. the way going forward:

- (Step 1): Pick a random edge and remove.
- (Step 2): Pick a random node w/ in-degree 0 and make it a self-loop.
- Repeat step 2 until we reach the end of the graph.

It has a runtime of $t($ step 2$) \cdot O\left(N=2^{n}\right)$, assuming a sub-exponentially secure $i \mathcal{O}$. Note that this is called a "hybrid argument."

Corollary (Step 1 change is indistinguishable)
Direct result of lemma 11, since it is equivalent of changing

$$
S_{k}(i, \sigma)
$$

to

$$
S_{k, r}^{\prime}(i, \sigma)=\left\{\begin{array}{l}
\perp \text { if } i=r \\
S_{k}(i, \sigma) \text { otherwise }
\end{array}\right.
$$

Appendix A: Reduce $i \mathcal{O}$ to a hard instance of SVL

Definition (puncturable PRFs)
Let n, k be polynomially bounded functions, then

$$
\mathcal{P} \mathcal{R} \mathcal{F}=\left\{\operatorname{PRF}_{S}:\{0,1\}^{n(|x|)} \rightarrow\{0,1\}^{|x|}\left|S \in\{0,1\}^{k(|x|)},|x| \in \mathbb{N}\right\}\right.
$$

associated with an efficient key sampler $\mathcal{K}_{\mathcal{P} \mathcal{R} \mathcal{F}}$ is puncturable if \exists a poly-time puncturing algorithm Punc that takes as in put a key S, and a point x^{*}, and output a punctured key $S\left\{x^{*}\right\}$, so that the following conditions are satisfied:
(1) (Functionality preserved) For every $x^{*} \in\{0,1\}^{n(|x|)}$,

$$
S \leftarrow \mathcal{K}_{\mathcal{P} \mathcal{R} \mathcal{F}\left(1^{|x|}\right)}\left[\forall x \neq x^{*}: \operatorname{PRF}_{S}(x)=\mathbf{P R F}_{S\left\{x^{*}\right\}}(x) \mid S\left\{x^{*}\right\}=\operatorname{Punc}\left(S, x^{*}\right)\right]=1
$$

(2) (Indistinguishability at punctured point) For any poly-size distinguisher \mathcal{D}, \exists negligible $\epsilon(\cdot)$, s.t. $\forall|x| \in \mathbb{N}$, and $x^{*} \in\{0,1\}^{n(|x|)}$:

$$
\left|\operatorname{Pr}\left[\mathcal{D}\left(x^{*}, S\left\{x^{*}\right\}, \operatorname{PRF}_{S}\left(x^{*}\right)\right)=1\right]-\operatorname{Pr}\left[\mathcal{D}\left(x^{*}, S\left\{x^{*}\right\}, u\right)=1\right]\right| \leq \epsilon(|x|)
$$

Appendix A: Reduce $i \mathcal{O}$ to a hard instance of SVL

Corollary (19, Step 2 change is indistinguishable)
The choice of in-degree 0 nodes is not truly random, as it can only be the ones that have already been made into a loop. Thus, we use puncturable pseudo-random functions for defining $\sigma_{i}=f_{k}(i)$, so that on some position i that has been punctured, it will still appear random even given the key k. Since now we have the true randomness after puncturing (r in place of σ_{i}, independent from rest of the program), we can just apply the lemma directly again similar to the previously corollary.

Now that we showed S and S^{\prime} are indistinguishable, we consider V and V^{\prime} : the hardness of computing V or V^{\prime} is not affected by the end node being a sink or a self-loop, so the fact that key, k, is obfuscated gives the hardness for both, and they should agree everywhere given how we defined their respective graphs.

Appendix A: Reduce $i \mathcal{O}$ to a hard instance of SVL

Summary

In summary, we have used $i \mathcal{O}$ to construct an instance of SVL, $\left(S, V, x_{s}, T\right)\left(x_{s}, T\right.$ follow conveniently from the set-up, so we focused on constructing S, V). We have shown that S, V are hard after applying sub-exponentially secure $i \mathcal{O}$ on S_{k}, V_{k} which assume the existence of PRFs. In this case, it takes a super-polynomial runtime to solve this constructed instance of SVL, making it a hard instance of SVL. In other words,
"super strong" iOWF and "super strong" $i \mathcal{O} \Longrightarrow$ a hard instance of SVL

