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Recap



Last lecture, we saw

Cryptographic hardness in PPAD ∩ PLS:

• “supper strong” iOWF + “supper strong” iO =⇒ SVL hard

• OWP + iO =⇒ SVL hard

In fact, the reduction in the latter work can also work with keyed iOWF (instead

of OWP), and (as we will hopefully see later in the class) [BPW] showed iO+

OWF implies keyed iOWF, so overall we can get:

OWF+ iO =⇒ SVL hard

However, the notion of iO still lies within the domain of speculation: many

candidate schemes have been broken, and surviving ones are yet to undergo

extensive evaluation.
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The Sink-of-Verifiable-Line Problem

Definition (Sink-of-Verifiable-Line, SVL)

A Sink-of-Verifiable-Line instance (S, V, T, v0) consists of

• T ∈ {1, 2, . . . , 2M},
• v0 ∈ {0, 1}M ,

• S : {0, 1}M → {0, 1}M ,

• V : {0, 1}M × {1, 2, . . . , T} → {0, 1}
with the guarantee that V (v, i) = 1 if and only if v = Si(v0).

The goal is to find a vertex v such that V (v, T ) = 1 (i.e., the sink).
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• S : {0, 1}M → {0, 1}M ,

• V : {0, 1}M × {1, 2, . . . , T} → {0, 1}
with the guarantee that V (v, i) = 1 if and only if v = Si(v0).

The goal is to find a vertex v such that V (v, T ) = 1 (i.e., the sink).

Lemma

SVL is reducible to UEOPL (Unique-End-of-Potential-Line, which is known to lie

in PPAD ∩ PLS, but not known to be complete).
3



The Sink-of-Verifiable-Line Problem

Definition (relaxed-Sink-of-Verifiable-Line, rSVL)

A relaxed-Sink-of-Verifiable-Line instance (S, V, T, v0) consists of

• ...

• V : {0, 1}M × {1, 2, . . . , T} → {0, 1}
with the guarantee that for every (v, i) such that v = Si(v0), V (v, i) = 1.

The goal is to find one of the following:

(i) The sink: a vertex v such that V (v, T ) = 1, or

(ii) False positive: a pair (v, i) such that v ̸= Si(v0) and V (v, i) = 1.
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with the guarantee that for every (v, i) such that v = Si(v0), V (v, i) = 1.

The goal is to find one of the following:

(i) The sink: a vertex v such that V (v, T ) = 1, or

(ii) False positive: a pair (v, i) such that v ̸= Si(v0) and V (v, i) = 1.

New Lemma

rSVL is also reducible to UEOPL.
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Today, we will see

Cryptographic hardness of rSVL – and therefore of PPAD ∩ PLS – based on

• hardness of counting # of satisfying assignments of a boolean formula

(#SAT), and

• soundness of Fiat-Shamir transformation applying to some interactive

protocol (the sumcheck protocol)
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Preliminaries: IP, the sumcheck

protocol



Unambiguous IPs

P (x) V (x)

...

An interactive protocol (P, V) is a δ-sound interactive proof (IP) for L if:

• Completeness: For every x ∈ L, if V interacts with P on common input x,

then V accepts with probability 1.

• Soundness: For every x /∈ L and every (computationally unbounded)

cheating prover strategy P̃ , the verier V accepts when interacting with P̃ with

probability less than δ(|x|) for some function δ.
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then V accepts with probability 1.

• Soundness: For every x /∈ L and every (computationally unbounded)

cheating prover strategy P̃ , the verier V accepts when interacting with P̃ with

probability less than δ(|x|) for some function δ.

Remark

NP ⊆ IP as the prover can send the certificate to the verifier in one round.

In fact, IP = PSPACE, where PSPACE contains all languages that can be computed

by a program (Turing machine) using polynomial space.
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Unambiguous IPs

An interactive protocol (P, V) is a (ϵ, δ)-unambiguosly sound interactive proof (IP)

for L if:

• Prescribed Completeness: For every x ∈ {0, 1}∗, if V interacts with P on

common input x, then V outputs L(x) with probability 1.

• Soundness: For every x /∈ L and every (computationally unbounded)

cheating prover strategy P̃ , the verier V accepts when interacting with P̃ with

probability less than δ(|x|) for some function δ.

• Unambiguity: For every x ∈ L and every (computationally unbounded)

cheating prover strategy P̃ , if P̃ deviates from P at some point, then at the

end of the protocol V accepts with probability at most ϵ(|x|).
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Interactive Sumcheck Protocol

• Fix a finite field F and a subset H ⊆ F (usually H = {0, 1}).
• The (not necessarily effcient) prover takes as input an n-variate low-degree

polynomial f : Fn → F.
– Degree at most d in each variable; think of d as a constant, significantly

smaller than |F|
– The verifier only has oracle access to f , and is given the constant

y = f(z) ∈ F for an oracle query z ∈ Fn. Each single oracle query runs in

time poly(n, d, log(|F|)).
• The prover’s goal is to convince a verifier that∑

z∈Hn

f(z) = y

for some value y ∈ F.
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Interactive Sumcheck Protocol: (PSC(y, f), V
f
SC(y))

For i← 1 to n:

At the beginning of round i, both PSC and VSC know yi−1 and

β1, . . . , βi−1 ∈ F, y0 = y

(a) PSC computes the degree-d

univariate polynomial gi(x) =∑
zi+1,...,zn∈H

f(β1, . . . , βi−1, x, zi+1, . . . , zn)

(b) VSC receives d + 1 field elements

αi,γ and interpolates the (unique)

degree-d polynomial ĝi such that

ĝi(γ) = αi,γ .

VSC then checks that
∑

x∈H ĝi(x) =

yi−1. If not, then VSC rejects.

(c) VSC chooses a random element βi ∈
F, sets yi = gi(βi), and sends βi to

PSC .

(*) At the last round, VSC uses a

single oracle call to f to check that

yn = f(β1, . . . , βn)

{αi,γ = gi(γ)}dγ=0

Sends βi
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Interactive Sumcheck Protocol: (PSC(y, f), V
f
SC(y))

Remark

The sumcheck protocol is public-coin (fresh coins chosen at each round). If all

randomnesses are in sky at the beginning of time, P could just send one message

and get something that is almost NP (except the randomnesses is in the sky).

Remark

We can extend the sumcheck protocol for instances f with a partial assignment

(β1, . . . , βj).
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Interactive Sumcheck Protocol: (PSC(y, f), V
f
SC(y))

Theorem

The sumcheck protocol is a (d(n− j)/|F|)-unambiguously sound interactive proof

system for prefixed LSC , i.e., given a partial assignment (β1, . . . , βj).

Theorem

The sumcheck protocol can be used to count/verify the number of satisfying

assignments of a SAT formula (#P-complete, believed to be hard):

SAT formula ⇒ 3SAT-4 formula ⇒ low-degree polynomial

Example

How to get low-degree polynomial? Arithmetization!

¬p⇒ (1− p) p1 ∧ p2 ⇒ p1 · p2

p1 ∨ p2 ⇒ 1− (1− p1)(1− p2)
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Non-interactive Proof Systems

A non-interactive proof system involves the prover sending a single message to the

verifier

To give this proof system additional power, we assume that both prover and

verifier have access to a common reference string (CRS):

π ← P (x,R)

V (x,R, π)

Remark

A non-interactive proof system is called an argument if the soundness and

unambiguity properties hold only against computationally-bounded (i.e., poly(n))

cheating prover strategy P .
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Fiat-Shamir Transformation

P V

α
β

γ PFS VFS

α, γ

Would V accept

w. β = h(α)?
h← H

• Many-message protocol ⇒ single-message protocol

• Big open problem: Is the Fiat-Shamir Transformation sound?

– Hash functions “looks like” random functions; generate “random bits” in

a mutually agreed way

– Negative results for some contrived protocols; don’t know if the

transformation is insecure when applying to a natural protocol
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Applying Fiat-Shamir Transformation to Sumcheck

• We assume the Fiat-Shamir heuristic is unambiguously sound for the

sumcheck protocol (this is true relative to a random oracle).

• Main result of this paper: Assuming there exists a hash function for which

Fiat-Shamir Transformation of the sumcheck protocol is unambiguously sound

and #SAT is hard, then rSVL is hard.

Corollary

If you show cryptographic assumption A implies that Fiat-Shamir transformation

of the sumcheck protocol is unambiguously sound, then rSVL is hard

Corollary

Relative to a random oracle, if #SAT is hard, then rSVL is hard.
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Proof systems and PPAD



PSPACE and PPAD (EOL)?

PSPACE computation is a exponential graph, and the solution is a sink...

• Problem 1: finding predecessors

• Problem 2: many solutions

We don’t think there is a reduction from a PSPACE-complete problem to PPAD.

Idea: Associate each state with a proof, and a verifier circuit that outputs 1 if the

state is a valid state in the line of computation
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Proof systems and PPAD

Add proof that node is on “correct” path of the computation; nodes without proof

become self-loops

• Computationally sound proofs suffice

• Need incremental unambiguous (to ensure the unique successor) proofs
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Incrementally Verifiable Computation [Valiant ’04]

Long computation (length L), performed via sequence of polynomial time steps:

• after step i, state is σi = (yi, πi), where πi is the proof

• step function S(i, σi) = σi+1 = (yi+1, πi+1)

• verifier V : Accept/reject given (i, yi, πi)

Completeness: SL(1, σ1) gives correct output

Soundness: hard to find accepting (i, σ̃i)

Incremental unambiguous verifiable computation procedure for a hard-on-average

problem =⇒ hardness-on-average of rSVL – the adversary has to either find the

sink (solve the instance) or some cheating proof (break the soundness).
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The Reduction



Incrementally Verifiable Counter for Satisfying Assignments

1 2 . . . i . . . n

(1, y1, π1) (i, yi, πi) (2n, y2n , π2n)

For a SAT formula φ(z1, z2, . . . , zn), we build a graph such that:

• yi – # of satisfying assignment ∈ [0n, i]

• πi – proof that yi is correct

• Goal: construct successor and verifier circuits:

– S(i, yi, πi)→ (yi+1, πi+1)

– V (i, yi, πi) accepts if πi proves that # of satisfying assignments ∈ [0, i] =

yi
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Incrementally Verifiable Counter for Satisfying Assignments

1 2 . . . i . . . n

(1, y1, π1) (i, yi, πi) (2n, y2n , π2n)

• Challenge: getting πi to be of size poly(n)

Solution: use the sumcheck protocol

• Challenge: protocol is interactive

Solution: use Fiat-Shamir transformation

• Challenge: computing S(i, yi, πi) = (yi+1, πi+1)

Solution: recursive approach, incremental proof update
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Incrementally Verifiable Counter for Satisfying Assignments

• In particular, given the counts for {yγ}dγ=0 for the (d+ 1) prefix sums with

prefixes (β, γ) (sums of size 2n−j ), computing a proof for the count

y = (y0 + y1) of the sum with prefix β (a sum of size 2n−j+1) reduces to

computing a single additional prefix sum of size 2n−j (by the sumcheck

protocol).

• Then, can merge the (d+ 2) proofs into one by the sumcheck protocol.

• Construct the proof recursively, the overall process looks like a

depth-first-search.

• The depth of the tree is at most n (at each level, reduce the # of variables by

1); each level contains at most (d+ 2) proofs.

• Overall, size of the proof at each step is still polynomial.
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Conclusion



Takeaways

• If we can build an incremental unambiguous computation procedure for a

hard-on-average problem, then rSVL is hard (which implies in turn

PPAD ∩ PLS is hard).

• Assuming Fiat-Shamir Transformation is unambiguously sound for the

sumcheck protocol, we construct such procedure for #SAT.

• So –

Finding a Nash Equilibrium (a PPAD-complete problem) Is No Easier Than

Breaking Fiat-Shamir
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Thanks for listening!
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