
Finding a Nash Equilibrium Is No Easier Than

Breaking Fiat-Shamir

Arka Rai Choudhuri, Pavel Hubacek, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen,

Guy N. Rothblum

Presented by Jiaqian Li, Kashvi Gupta, adapted from Guy Rothblum’s slides

March 21, 2024

Columbia University

1

Recap

Last lecture, we saw

Cryptographic hardness in PPAD ∩ PLS:

• “supper strong” iOWF + “supper strong” iO =⇒ SVL hard

• OWP + iO =⇒ SVL hard

In fact, the reduction in the latter work can also work with keyed iOWF (instead

of OWP), and (as we will hopefully see later in the class) [BPW] showed iO+

OWF implies keyed iOWF, so overall we can get:

OWF+ iO =⇒ SVL hard

However, the notion of iO still lies within the domain of speculation: many

candidate schemes have been broken, and surviving ones are yet to undergo

extensive evaluation.

2

Last lecture, we saw

Cryptographic hardness in PPAD ∩ PLS:

• “supper strong” iOWF + “supper strong” iO =⇒ SVL hard

• OWP + iO =⇒ SVL hard

In fact, the reduction in the latter work can also work with keyed iOWF (instead

of OWP), and (as we will hopefully see later in the class) [BPW] showed iO+

OWF implies keyed iOWF, so overall we can get:

OWF+ iO =⇒ SVL hard

However, the notion of iO still lies within the domain of speculation: many

candidate schemes have been broken, and surviving ones are yet to undergo

extensive evaluation.

2

The Sink-of-Verifiable-Line Problem

Definition (Sink-of-Verifiable-Line, SVL)

A Sink-of-Verifiable-Line instance (S, V, T, v0) consists of

• T ∈ {1, 2, . . . , 2M},
• v0 ∈ {0, 1}M ,

• S : {0, 1}M → {0, 1}M ,

• V : {0, 1}M × {1, 2, . . . , T} → {0, 1}
with the guarantee that V (v, i) = 1 if and only if v = Si(v0).

The goal is to find a vertex v such that V (v, T) = 1 (i.e., the sink).

3

The Sink-of-Verifiable-Line Problem

Definition (Sink-of-Verifiable-Line, SVL)

A Sink-of-Verifiable-Line instance (S, V, T, v0) consists of

• T ∈ {1, 2, . . . , 2M},
• v0 ∈ {0, 1}M ,

• S : {0, 1}M → {0, 1}M ,

• V : {0, 1}M × {1, 2, . . . , T} → {0, 1}
with the guarantee that V (v, i) = 1 if and only if v = Si(v0).

The goal is to find a vertex v such that V (v, T) = 1 (i.e., the sink).

Lemma

SVL is reducible to UEOPL (Unique-End-of-Potential-Line, which is known to lie

in PPAD ∩ PLS, but not known to be complete).
3

The Sink-of-Verifiable-Line Problem

Definition (relaxed-Sink-of-Verifiable-Line, rSVL)

A relaxed-Sink-of-Verifiable-Line instance (S, V, T, v0) consists of

• ...

• V : {0, 1}M × {1, 2, . . . , T} → {0, 1}
with the guarantee that for every (v, i) such that v = Si(v0), V (v, i) = 1.

The goal is to find one of the following:

(i) The sink: a vertex v such that V (v, T) = 1, or

(ii) False positive: a pair (v, i) such that v ̸= Si(v0) and V (v, i) = 1.

3

The Sink-of-Verifiable-Line Problem

Definition (relaxed-Sink-of-Verifiable-Line, rSVL)

A relaxed-Sink-of-Verifiable-Line instance (S, V, T, v0) consists of

• ...

• V : {0, 1}M × {1, 2, . . . , T} → {0, 1}
with the guarantee that for every (v, i) such that v = Si(v0), V (v, i) = 1.

The goal is to find one of the following:

(i) The sink: a vertex v such that V (v, T) = 1, or

(ii) False positive: a pair (v, i) such that v ̸= Si(v0) and V (v, i) = 1.

New Lemma

rSVL is also reducible to UEOPL.
3

Today, we will see

Cryptographic hardness of rSVL – and therefore of PPAD ∩ PLS – based on

• hardness of counting # of satisfying assignments of a boolean formula

(#SAT), and

• soundness of Fiat-Shamir transformation applying to some interactive

protocol (the sumcheck protocol)

4

Preliminaries: IP, the sumcheck

protocol

Unambiguous IPs

P (x) V (x)

...

An interactive protocol (P, V) is a δ-sound interactive proof (IP) for L if:

• Completeness: For every x ∈ L, if V interacts with P on common input x,

then V accepts with probability 1.

• Soundness: For every x /∈ L and every (computationally unbounded)

cheating prover strategy P̃ , the verier V accepts when interacting with P̃ with

probability less than δ(|x|) for some function δ.

5

Unambiguous IPs

An interactive protocol (P, V) is a δ-sound interactive proof (IP) for L if:

• Completeness: For every x ∈ L, if V interacts with P on common input x,

then V accepts with probability 1.

• Soundness: For every x /∈ L and every (computationally unbounded)

cheating prover strategy P̃ , the verier V accepts when interacting with P̃ with

probability less than δ(|x|) for some function δ.

Remark

NP ⊆ IP as the prover can send the certificate to the verifier in one round.

In fact, IP = PSPACE, where PSPACE contains all languages that can be computed

by a program (Turing machine) using polynomial space.

5

Unambiguous IPs

An interactive protocol (P, V) is a (ϵ, δ)-unambiguosly sound interactive proof (IP)

for L if:

• Prescribed Completeness: For every x ∈ {0, 1}∗, if V interacts with P on

common input x, then V outputs L(x) with probability 1.

• Soundness: For every x /∈ L and every (computationally unbounded)

cheating prover strategy P̃ , the verier V accepts when interacting with P̃ with

probability less than δ(|x|) for some function δ.

• Unambiguity: For every x ∈ L and every (computationally unbounded)

cheating prover strategy P̃ , if P̃ deviates from P at some point, then at the

end of the protocol V accepts with probability at most ϵ(|x|).

5

Unambiguous IPs

An interactive protocol (P, V) is a (ϵ, δ)-unambiguosly sound interactive proof (IP)

for L if:

• Prescribed Completeness: For every x ∈ {0, 1}∗, if V interacts with P on

common input x, then V outputs L(x) with probability 1.

• Soundness: For every x /∈ L and every (computationally unbounded)

cheating prover strategy P̃ , the verier V accepts when interacting with P̃ with

probability less than δ(|x|) for some function δ.

• Unambiguity: For every x ∈ L and every (computationally unbounded)

cheating prover strategy P̃ , if P̃ deviates from P at some point, then at the

end of the protocol V accepts with probability at most ϵ(|x|).

Remark

Unambiguous IP is more restrictive than IP. But in particular it will be good

enough for an important problem... 5

Interactive Sumcheck Protocol

• Fix a finite field F and a subset H ⊆ F (usually H = {0, 1}).
• The (not necessarily effcient) prover takes as input an n-variate low-degree

polynomial f : Fn → F.
– Degree at most d in each variable; think of d as a constant, significantly

smaller than |F|
– The verifier only has oracle access to f , and is given the constant

y = f(z) ∈ F for an oracle query z ∈ Fn. Each single oracle query runs in

time poly(n, d, log(|F|)).
• The prover’s goal is to convince a verifier that∑

z∈Hn

f(z) = y

for some value y ∈ F.

6

Interactive Sumcheck Protocol: (PSC(y, f), V
f
SC(y))

For i← 1 to n:

At the beginning of round i, both PSC and VSC know yi−1 and

β1, . . . , βi−1 ∈ F, y0 = y

(a) PSC computes the degree-d

univariate polynomial gi(x) =∑
zi+1,...,zn∈H

f(β1, . . . , βi−1, x, zi+1, . . . , zn)

(b) VSC receives d + 1 field elements

αi,γ and interpolates the (unique)

degree-d polynomial ĝi such that

ĝi(γ) = αi,γ .

VSC then checks that
∑

x∈H ĝi(x) =

yi−1. If not, then VSC rejects.

(c) VSC chooses a random element βi ∈
F, sets yi = gi(βi), and sends βi to

PSC .

(*) At the last round, VSC uses a

single oracle call to f to check that

yn = f(β1, . . . , βn)

{αi,γ = gi(γ)}dγ=0

Sends βi

7

Interactive Sumcheck Protocol: (PSC(y, f), V
f
SC(y))

Remark

The sumcheck protocol is public-coin (fresh coins chosen at each round). If all

randomnesses are in sky at the beginning of time, P could just send one message

and get something that is almost NP (except the randomnesses is in the sky).

Remark

We can extend the sumcheck protocol for instances f with a partial assignment

(β1, . . . , βj).

8

Interactive Sumcheck Protocol: (PSC(y, f), V
f
SC(y))

Theorem

The sumcheck protocol is a (d(n− j)/|F|)-unambiguously sound interactive proof

system for prefixed LSC , i.e., given a partial assignment (β1, . . . , βj).

Theorem

The sumcheck protocol can be used to count/verify the number of satisfying

assignments of a SAT formula (#P-complete, believed to be hard):

SAT formula ⇒ 3SAT-4 formula ⇒ low-degree polynomial

Example

How to get low-degree polynomial? Arithmetization!

¬p⇒ (1− p) p1 ∧ p2 ⇒ p1 · p2

p1 ∨ p2 ⇒ 1− (1− p1)(1− p2)

9

Interactive Sumcheck Protocol: (PSC(y, f), V
f
SC(y))

Theorem

The sumcheck protocol is a (d(n− j)/|F|)-unambiguously sound interactive proof

system for prefixed LSC , i.e., given a partial assignment (β1, . . . , βj).

Theorem

The sumcheck protocol can be used to count/verify the number of satisfying

assignments of a SAT formula (#P-complete, believed to be hard):

SAT formula ⇒ 3SAT-4 formula ⇒ low-degree polynomial

Example

How to get low-degree polynomial? Arithmetization!

¬p⇒ (1− p) p1 ∧ p2 ⇒ p1 · p2

p1 ∨ p2 ⇒ 1− (1− p1)(1− p2)

9

Interactive Sumcheck Protocol: (PSC(y, f), V
f
SC(y))

Theorem

The sumcheck protocol is a (d(n− j)/|F|)-unambiguously sound interactive proof

system for prefixed LSC , i.e., given a partial assignment (β1, . . . , βj).

Theorem

The sumcheck protocol can be used to count/verify the number of satisfying

assignments of a SAT formula (#P-complete, believed to be hard):

SAT formula ⇒ 3SAT-4 formula ⇒ low-degree polynomial

Example

How to get low-degree polynomial? Arithmetization!

¬p⇒ (1− p) p1 ∧ p2 ⇒ p1 · p2

p1 ∨ p2 ⇒ 1− (1− p1)(1− p2)
9

Non-interactive Proof Systems

A non-interactive proof system involves the prover sending a single message to the

verifier

To give this proof system additional power, we assume that both prover and

verifier have access to a common reference string (CRS):

π ← P (x,R)

V (x,R, π)

Remark

A non-interactive proof system is called an argument if the soundness and

unambiguity properties hold only against computationally-bounded (i.e., poly(n))

cheating prover strategy P .

10

Non-interactive Proof Systems

A non-interactive proof system involves the prover sending a single message to the

verifier

To give this proof system additional power, we assume that both prover and

verifier have access to a common reference string (CRS):

π ← P (x,R)

V (x,R, π)

Remark

A non-interactive proof system is called an argument if the soundness and

unambiguity properties hold only against computationally-bounded (i.e., poly(n))

cheating prover strategy P .

10

Fiat-Shamir Transformation

P V

α
β

γ PFS VFS

α, γ

Would V accept

w. β = h(α)?
h← H

• Many-message protocol ⇒ single-message protocol

• Big open problem: Is the Fiat-Shamir Transformation sound?

– Hash functions “looks like” random functions; generate “random bits” in

a mutually agreed way

– Negative results for some contrived protocols; don’t know if the

transformation is insecure when applying to a natural protocol

11

Fiat-Shamir Transformation

P V

α
β

γ PFS VFS

α, γ

Would V accept

w. β = h(α)?
h← H

• Many-message protocol ⇒ single-message protocol

• Big open problem: Is the Fiat-Shamir Transformation sound?

– Hash functions “looks like” random functions; generate “random bits” in

a mutually agreed way

– Negative results for some contrived protocols; don’t know if the

transformation is insecure when applying to a natural protocol
11

Applying Fiat-Shamir Transformation to Sumcheck

• We assume the Fiat-Shamir heuristic is unambiguously sound for the

sumcheck protocol (this is true relative to a random oracle).

• Main result of this paper: Assuming there exists a hash function for which

Fiat-Shamir Transformation of the sumcheck protocol is unambiguously sound

and #SAT is hard, then rSVL is hard.

Corollary

If you show cryptographic assumption A implies that Fiat-Shamir transformation

of the sumcheck protocol is unambiguously sound, then rSVL is hard

Corollary

Relative to a random oracle, if #SAT is hard, then rSVL is hard.

12

Applying Fiat-Shamir Transformation to Sumcheck

• We assume the Fiat-Shamir heuristic is unambiguously sound for the

sumcheck protocol (this is true relative to a random oracle).

• Main result of this paper: Assuming there exists a hash function for which

Fiat-Shamir Transformation of the sumcheck protocol is unambiguously sound

and #SAT is hard, then rSVL is hard.

Corollary

If you show cryptographic assumption A implies that Fiat-Shamir transformation

of the sumcheck protocol is unambiguously sound, then rSVL is hard

Corollary

Relative to a random oracle, if #SAT is hard, then rSVL is hard.

12

Proof systems and PPAD

PSPACE and PPAD (EOL)?

PSPACE computation is a exponential graph, and the solution is a sink...

• Problem 1: finding predecessors

• Problem 2: many solutions

We don’t think there is a reduction from a PSPACE-complete problem to PPAD.

Idea: Associate each state with a proof, and a verifier circuit that outputs 1 if the

state is a valid state in the line of computation

13

PSPACE and PPAD (EOL)?

PSPACE computation is a exponential graph, and the solution is a sink...

• Problem 1: finding predecessors

• Problem 2: many solutions

We don’t think there is a reduction from a PSPACE-complete problem to PPAD.

Idea: Associate each state with a proof, and a verifier circuit that outputs 1 if the

state is a valid state in the line of computation

13

Proof systems and PPAD

Add proof that node is on “correct” path of the computation; nodes without proof

become self-loops

• Computationally sound proofs suffice

• Need incremental unambiguous (to ensure the unique successor) proofs

14

Incrementally Verifiable Computation [Valiant ’04]

Long computation (length L), performed via sequence of polynomial time steps:

• after step i, state is σi = (yi, πi), where πi is the proof

• step function S(i, σi) = σi+1 = (yi+1, πi+1)

• verifier V : Accept/reject given (i, yi, πi)

Completeness: SL(1, σ1) gives correct output

Soundness: hard to find accepting (i, σ̃i)

Incremental unambiguous verifiable computation procedure for a hard-on-average

problem =⇒ hardness-on-average of rSVL – the adversary has to either find the

sink (solve the instance) or some cheating proof (break the soundness).

15

Incrementally Verifiable Computation [Valiant ’04]

Long computation (length L), performed via sequence of polynomial time steps:

• after step i, state is σi = (yi, πi), where πi is the proof

• step function S(i, σi) = σi+1 = (yi+1, πi+1)

• verifier V : Accept/reject given (i, yi, πi)

Completeness: SL(1, σ1) gives correct output

Soundness: hard to find accepting (i, σ̃i)

Incremental unambiguous verifiable computation procedure for a hard-on-average

problem =⇒ hardness-on-average of rSVL

– the adversary has to either find the

sink (solve the instance) or some cheating proof (break the soundness).

15

Incrementally Verifiable Computation [Valiant ’04]

Long computation (length L), performed via sequence of polynomial time steps:

• after step i, state is σi = (yi, πi), where πi is the proof

• step function S(i, σi) = σi+1 = (yi+1, πi+1)

• verifier V : Accept/reject given (i, yi, πi)

Completeness: SL(1, σ1) gives correct output

Soundness: hard to find accepting (i, σ̃i)

Incremental unambiguous verifiable computation procedure for a hard-on-average

problem =⇒ hardness-on-average of rSVL – the adversary has to either find the

sink (solve the instance) or some cheating proof (break the soundness).

15

The Reduction

Incrementally Verifiable Counter for Satisfying Assignments

1 2 . . . i . . . n

(1, y1, π1) (i, yi, πi) (2n, y2n , π2n)

For a SAT formula φ(z1, z2, . . . , zn), we build a graph such that:

• yi – # of satisfying assignment ∈ [0n, i]

• πi – proof that yi is correct

• Goal: construct successor and verifier circuits:

– S(i, yi, πi)→ (yi+1, πi+1)

– V (i, yi, πi) accepts if πi proves that # of satisfying assignments ∈ [0, i] =

yi

16

Incrementally Verifiable Counter for Satisfying Assignments

1 2 . . . i . . . n

(1, y1, π1) (i, yi, πi) (2n, y2n , π2n)

• Challenge: getting πi to be of size poly(n)

Solution: use the sumcheck protocol

• Challenge: protocol is interactive

Solution: use Fiat-Shamir transformation

• Challenge: computing S(i, yi, πi) = (yi+1, πi+1)

Solution: recursive approach, incremental proof update

16

Incrementally Verifiable Counter for Satisfying Assignments

• In particular, given the counts for {yγ}dγ=0 for the (d+ 1) prefix sums with

prefixes (β, γ) (sums of size 2n−j), computing a proof for the count

y = (y0 + y1) of the sum with prefix β (a sum of size 2n−j+1) reduces to

computing a single additional prefix sum of size 2n−j (by the sumcheck

protocol).

• Then, can merge the (d+ 2) proofs into one by the sumcheck protocol.

• Construct the proof recursively, the overall process looks like a

depth-first-search.

• The depth of the tree is at most n (at each level, reduce the # of variables by

1); each level contains at most (d+ 2) proofs.

• Overall, size of the proof at each step is still polynomial.

17

Incrementally Verifiable Counter for Satisfying Assignments

• In particular, given the counts for {yγ}dγ=0 for the (d+ 1) prefix sums with

prefixes (β, γ) (sums of size 2n−j), computing a proof for the count

y = (y0 + y1) of the sum with prefix β (a sum of size 2n−j+1) reduces to

computing a single additional prefix sum of size 2n−j (by the sumcheck

protocol).

• Then, can merge the (d+ 2) proofs into one by the sumcheck protocol.

• Construct the proof recursively, the overall process looks like a

depth-first-search.

• The depth of the tree is at most n (at each level, reduce the # of variables by

1); each level contains at most (d+ 2) proofs.

• Overall, size of the proof at each step is still polynomial.

17

Incrementally Verifiable Counter for Satisfying Assignments

• In particular, given the counts for {yγ}dγ=0 for the (d+ 1) prefix sums with

prefixes (β, γ) (sums of size 2n−j), computing a proof for the count

y = (y0 + y1) of the sum with prefix β (a sum of size 2n−j+1) reduces to

computing a single additional prefix sum of size 2n−j (by the sumcheck

protocol).

• Then, can merge the (d+ 2) proofs into one by the sumcheck protocol.

• Construct the proof recursively, the overall process looks like a

depth-first-search.

• The depth of the tree is at most n (at each level, reduce the # of variables by

1); each level contains at most (d+ 2) proofs.

• Overall, size of the proof at each step is still polynomial.

17

Conclusion

Takeaways

• If we can build an incremental unambiguous computation procedure for a

hard-on-average problem, then rSVL is hard (which implies in turn

PPAD ∩ PLS is hard).

• Assuming Fiat-Shamir Transformation is unambiguously sound for the

sumcheck protocol, we construct such procedure for #SAT.

• So –

Finding a Nash Equilibrium (a PPAD-complete problem) Is No Easier Than

Breaking Fiat-Shamir

18

Thanks for listening!

19

	Recap
	Preliminaries: IP, the sumcheck protocol
	Proof systems and PPAD
	The Reduction
	Conclusion

