
Quiz 2 - COMS E6261: Advanced Cryptography

Question 1

Recall the PPA-complete problem LONELY from class: given a circuit C :
{0, 1}n → {0, 1}n s.t. x,y are paired (aka ”matched”) iff C(x) = y ∧ C(y) = x,
either demonstrate that 0n is paired, or find another element x ̸= 0n that is
unpaired.

What if we represented pairings a different way? Given a circuit C : {0, 1}n×
{0, 1}n → {0, 1}, let x and y be paired iff C(x, y) = C(y, x) = 1.

Then consider the same search problem as above: Given such a C, either
demonstrate that 0n is paired, or return another element x ̸= 0n that is un-
paired.

Is this problem in TFNP?

Yes

No

Explanation: This problem is not in TFNP for several reasons. For one,
it’s not total – the way we defined pairing does not necessarily correspond to
a perfect matching (e.g., some x could be matched to more than one y) and
thus it’s not necessary that, even if 0n is unpaired, there’s another unpaired
element. Moreover, it’s not clear how to verify in polynomial time that a given
x is unmatched with any other element.

Question 2

Let us slightly change the representation in the previous problem. x is defined
to be unpaired if C(x, x) = 1. That is, x and y are paired iff C(x, y) = C(y, x) =
1 ∧ C(x, x) = C(y, y) = 0.

Consider the following search problem: Given C output one of:

(1) ⊥ if 0n is not unpaired.

(2) A violating element x s.t. C(x, x) = 1 but x satisfies the other conditions
to be paired with another element.

(3) A violating element x s.t. C(x, x) = 0 but x is not paired with any other
element.

(4) A violating element x s.t. C(x, x) = 0 but x is paired to more than one
element.

(5) Another unpaired element w ̸= 0n.

1



Question 2.1

This problem is total.

True

False

Explanation: (2), (3) and (4) ensure that C encodes a valid matching; in
particular, an element can only be paired with at most one other element,
solving the issue in the previous problem. Thus, if there is no solution of type
(1)–(4) that ensures that 0n is unpaired and that there is another unpaired
element (since C is a matching on an odd-sized domain), so there must be a
solution of type (5).

Question 2.2

Which of the allowed solution types must have efficiently verifiable NP certifi-
cates? (1)-(5) are the same as above:

□✓ (1) ⊥ if 0n is not unpaired.

□✓ (2) A violating element x s.t. C(x, x) = 1 but x satisfies the other condi-
tions to be paired with another element.

□ (3) A violating element x s.t. C(x, x) = 0 but x is not paired with any
other element.

□✓ (4) A violating element x s.t. C(x, x) = 0 but x is paired to more than
one element.

□✓ (5) Another unpaired element w ̸= 0n.

Explanation: (1) ⊥ is correct if C(0n, 0n) = 0, which can be checked directly.
For (2) the certificate is another y s.t. C(x, y) = C(y, x) = 1 and C(y, y) = 0;
the condition C(x, x) = 1 can be checked directly. For (3) we don’t know how
to certify that there is no y such that C(x, y) = C(y, x) = 1 ∧ C(y, y) = 0. For
(4) the certificate are two y, z such that x is paired with both y and z. For (5)
we can check that C(w,w) = 1.

Remark: The point of the last two questions was to demonstrate that it’s
not always easy to come up with other ways to define matching that is still in
TFNP. We also note (not part of what we studied so far) that the way defined
in this problem, while not (known to be) in TFNP, is higher in the hierarchy,
in TFΣ2 (where we can also define analogues of classes like PPA, PPAD, and
so on).

2



Question 3

Let C : {0, 1}n+1 → {0, 1}n be a an instance of WEAK-PIGEON (where as
usual, C is of polynomial size in n). This instance has exponentially many
solutions.

True

False

Explanation: We mentioned in class that a circuit C : {0, 1}n+1 → {0, 1}n
has at least 2n colliding pairs – this follows by a simple counting argument, as
the domain includes 2n more elements than the co-domain.

Question 4

Let R be a search problem in PWPP. Then any instance of R must necessarily
have exponentially many solutions.

True

False

Explanation: This is not necessarily true; R in PWPP means that instances
of R can be reduced to instances of WEAK-PIGEON, such that given a solution
to the WEAK-PIGEON instance, we can compute a solution to the R instance.
It is true that all the solutions to the WEAK-PIGEON instance must yield a
solution to the original problem, but many can map to the same problem. For
instance we mentioned in class that Factoring reduces to PWPP (with random-
ness), but the original problem (Factoring) has polynomially many solutions
(unique factors).

Question 5

Let N be an integer of length n and suppose it were proven that there is always
a quadratic non-residue mod N in the range [1,

√
N ]. This would mean that

that Good Integer Factoring GIF can be reduced to PPP, using the result that
we saw in class (recall we saw that if you can find a quadratic non-residue for a
good integer, you can reduce to PPP).

True

False

3



Explanation: This is false because
√
N is super-polynomial in the input rep-

resentation size n, so looping through the range to find a non-residue and apply
to the reduction to PPP would not be efficient. We do not know how to other-
wise find the non-residue in that range. In fact, the problem of factoring itself
must have a solution in that range, but does not mean factoring is in FP.

Question 6

Let N be an integer of length n and suppose it were proven that there is always
a quadratic non-residue mod N in the range [N−n5, N ]. This would mean that
that Good Integer Factoring GIF can be reduced to PPP, using the result that
we saw in class (recall we saw that if you can find a quadratic non-residue for a
good integer, you can reduce to PPP).

True

False

Explanation: This is true, because the range of n5 numbers can be efficiently
looped through.

Remark: Note that this looping would give a reduction that calls the PPP
oracle multiple times, while to be in PPP, by the way we define subclasses of
TFNP, a problem has to be reducible by a reduction that calls the oracle just
once (aka as many-to-one reduction or Turing reduction). This is why we used
the wording “reduces to PPP” rather than “in PPP.” However, in this case the
distinction turns out to not matter, as one can prove that FPPPP = PPP (you’re
welcome to try to prove this as a non-required homework problem).

4


