
Quiz 6 - COMS E6261: Advanced Cryptography

Question 1

(Throughout the quiz, we use “black-box” to mean “fully black-box” – the only
thing we’ve mentioned in class; there are other weaker notions of black-box
reductions in the literature, and even in the paper that was presented, but we
did not address them).

Recall that in a black-box construction of a primitive Q from primitive P,
the “proof of security” of primitive Q must look like this: a description of
a randomized PPT algorithm that breaks the security of primitive P, which
interacts only with an oracle AQ for breaking Q, and an oracle from the primitive
P. Importantly, the queries submitted to AQ can themselves contain queries to
the P oracle built in to them; that is, the queries submitted to AQ can contain
“oracle gates” that query the P oracle (review the lecture for a more detailed
exposition).

We call a black-box reduction oblivious if, in the addition to being black-box
it makes all its queries to AQ, the Q-solver, before making any queries to the
P oracle (the primitive it is trying to break). Oblivious is a good term for this
because, intuitively, the P-solver learns nothing about the specific P instance it
is trying to solve before querying the AQ, the solver of the new primitive.

The paper [FGHMY] we saw last lecture, showed that there is no black-
box construction of a hard-on-average TFNP problem from OWF, where the
reduction is oblivious and calls AQ one time.

For the following constructions of one primitive from another, choose whether
the construction is black-box and/or oblivious.

Question 1.1

The construction of OWF from CRHF.
Reminder of the security proof: the CRHF-solver works as follows. Query

the CRHF on a random input x, get y. Submit y to AOWF, get back a preimage
x′. With non-negligible probability, x′ ̸= x and (x, x′) is a solution.

Not black-box

Black-box but not oblivious

Black-box and oblivious

Explanation: This was mentioned in class. The reduction queries the CRHF
first, before calling the adversary (as it needs to know what y to submit to the
adversary), so it is not oblivious.

1

Question 1.2

The construction of hard PPP instances from OWP.
Reminder of the security proof: the OWP-solver works as follows. Given

y to invert, create the circuit Cy which on input x runs the OWP on x (i.e.
using an oracle gate) and outputs the same, unless the output was the 0 string,
in which case the circuit outputs y. Submit Cy to AdvPPP, and get a solution
(x, x′) where x ̸= x′ that both map to y and one of which is the OWP preimage
of y.

Not black-box

Black-box but not oblivious

Black-box and oblivious

Explanation: This construction is oblivious: given y, you can create the
circuit Cy with oracle gates to the OWP. You do not need to query the OWP
first in order to prepare the input Cy.

Question 1.3

The construction of hard PWPP instances from CRHF.
Reminder of the security proof: the CRHF solver works as follows. Pass the

CRHF to the PWPP solver (i.e., give APWPP a circuit composed of one oracle
gate for the CRHF); the solution returned by APWPP is a collision of the CRHF.

Not black-box

Black-box but not oblivious

Black-box and oblivious

Explanation: Again, this construction is oblivious.

Question 1.4

The construction of PRG from PRF.
Since we did not cover this in class, here’s a recap of the construction (for

specific parameters, just for ease of exposition) and the security proof.
Construction: Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a length preserving

PRF (so for each k ∈ {0, 1}n we have Fk : {0, 1}n → {0, 1}n). Define G
to be the following length-doubling function: For x ∈ {0, 1}n, define G(x) =
Fx(0

n)||Fx(1
n). Then G is a PRG.

Security proof: If DG is a ppt adversary breaking G as a PRG, define the ppt
DF (which has access to an oracle function and needs to distinguish whether it
is Fk for a random k vs a truly random function) as follows. DF (1

n): Query
the function at the point 0n (call its answer y), and at the point 1n (call its
answer z). Run DG(y||z) and output the same.

2

Not black-box

Black-box but not oblivious

Black-box and oblivious

Explanation: The adversaryDF in this proof needs to call the function oracle
in order to prepare the input that it calls the adversary DG on. As an informal
aside, this reduction seems “a little more oblivious” than the construction of
OWF from CRHF we saw above – can you see why?

Note that all the constructions above are black-box – the construction uses
the primitive in a black-box way, and the adversary in the proof of security uses
the given adversary in a black-box way – in both cases, only the input-output
behavior is invoked, we do not care about any other properties of the function
implemented by the oracle (e.g, what the implementation looks like, efficiency,
etc). We will see in upcoming classes other reductions that are not black-box
and need to use the actual implementation/circuit.

Question 2

Question 2.1

You have an idea – you think you can prove that if OWF exist, there exists a
worst-case hard problem in TFNP: no PPT algorithm solves this problem on all
inputs. Your reduction is oblivious black-box and calls the TFNP-solver oracle
once.

We have seen in class that this is already known – nothing new.

We have seen in class that this is not possible – you must be wrong.

None of the above. Time to work out the details and start getting excited
– could be interesting!

Explanation: We showed it’s not possible to construct an average-case hard
problem in TFNP with such a reduction.

3

Question 2.2

You have an idea – you think you can prove that if OWF exist, and moreover
if for every input length n the OWF is a bijection on {0, 1}n, then there exists
a average-case hard problem in TFNP.

We have seen in class that this is already known – nothing new.

We have seen in class that this is not possible – you must be wrong.

None of the above. Time to work out the details and start getting excited
– could be interesting!

Explanation: This is a OWP – we saw in class it implies average case hardness
of PIGEON (in PPP – a subset of TFNP)

4

