
Quiz 9 - COMS E6261: Advanced Cryptography

Question 1

Suppose you have a proof system (P, V) for some language L, which on input
x (given to both P and V) works as follows:

Round 1: P sends a message α to V Round 2: V selects β (of poly(|x|)
length) uniformly at random and sends to P Round 3: P answers with γ

Output: V (x, α, β, γ) ∈ {0, 1}
We now apply the Fiat-Shamir transformation to this proof system, us-

ing hash function H. Doing this yields the following non-interactive protocol
(P ′, V ′) (where both P, V ′ have input x, and both share access to H):

Round 1: P ′ sends α, γ (generated appropriately - details skipped).
Output: V ′ first sets

β = H(x, α) or β = H(x)

then outputs V (x, α, β, γ)

Question 2

Suppose a language L is in unique NP, that is, for x ∈ L, there exists a unique
certificate π accepted by the NP-verifiyng machine.

Then L has a (0, 0)-unambiguously sound interactive protocol.

True

False

Explanation: Any NP language has an interactive proof, where the prover
just sends the certificate. However, since L has unique certificates, if the prover
does anything but send the single possible certificate for an instance in the
language, the verifier will reject with probability 1.

Question 3

The rest of the questions have to do with taking a hard language L in PSPACE
(can be computed by a polynomial-space machine M) and, assuming some ad-
ditional structure, deriving a hard problem in TFNP. Let L be such a language,
decided by poly-space TM M .

1

Recall from Jiaqian’s presentation that the computation of M on an input x
can be transformed into an end-of-line-style search problem on an exponentially
sized graph G, where a vertex contains M ’s state along with the the contents
of M ’s tapes. The successor circuit S simulates M on the given tape contents,
outputting the next state. The ”source” node is the state q0 of M along with
an input tape containing x and an empty working tape. The ”sink” that is the
desired object of the search problem is the vertex where S outputs the same
vertex (that is, M halts), as it will contain the final output of M(x).

The above reduction (from a machine M and input x to a graph G encoded
by the successor circuit S) reduces deciding membership in L to a problem in:

□ FNP

□ TFNP

□ PPAD ∩ PLS

(check all that apply)

Explanation: None of the above; first of all, a simple sanity check should
remind us that we shouldn’t expect to take any problem in PSPACE, a class
which contains the whole polynomial hierarchy, and reduce it to any problem in
TFNP, or even FNP. Even though the reduction above does “reduce” a PSPACE
language to a graph sink problem, there is no way to verify that the sink node is
a “valid” sink. For example, one could immediately offer the vertices (qhalt, x, 0)
and (qhalt, x, 1) as “sinks” (say M halts in both these states), but you have no
way of knowing which one lies on the ”true” path that emanates from (q0, x,).

Question 4

Next, suppose that for a PSPACE language L decided by machine M , we ad-
ditionally assume we have the following structure: there also exists a circuit V
that takes as input x, a possible configuration c of M , and a “candidate proof”
π, where for any x, c, there exists a proof π such that V (x, c, π) = 1 if and only
if c is a valid state in the computation path of M starting on input x. More-
over, assume that if such a π exists, it is unique (in other words, for all x, c, if
c is on the computation path of M(x), there exists a unique proof π such that
V (x, c, π) = 1, and if c is not on the computation path, then no such π exists).

For such a language L, deciding membership in L certainly reduces to a
search problem in:

□✓ FNP

□✓ TFNP

□ PLS ∩ PPAD

(check all that apply)

2

Explanation: Since M decides L, and given that such a V exists, for all
strings x there must be a ”proof” π for the final halting state of M(x), which
is an NP certificate for either its membership in L, or for its non-membership
in L; the search problem of finding π therefore reduces the problem to a TFNP
problem. However we cannot say anything more about the structure of this
search problem. It is easy to think that V means we now have a graph end-
of-line like total search problem, but note that we did not assume that we can
generate a proof the next state from the current state, so in particular, it is not
clear how to define a meaningful successor circuit.

We also note that the answer would not change even if we did not have the
uniqueness guarantee

Question 5

Now assume that in addition to all the assumptions from the previous problem,
there exists a circuit S that given input x, configuration c and proof π such that
V (x, c, π) = 1, outputs the next configuration c′ in the computation path M(x)
along with a proof π′ such that V (x, c′, π′) = 1.

For such a language L, deciding membership in L certainly reduces to a
search problem in:

□✓ FNP

□✓ TFNP

□✓ PLS ∩ PPAD

(check all that apply)
Hint: if such proofs π exist, can we augment them to remember how ”far

along” we are in the computation path M(x)?

Explanation: Although not necessarily obvious at first sight, this gives us ex-
actly the SVL promise problem scenario. This is because if such ”incrementally
computable” proofs exist, then we can augment the proofs to contain the dis-
tance i from the beginning of the computation path (that is, i = 0 for the state
that has q0 and an empty working tape); the ”new” successor circuit applies the
old one to the part of the proof that is the original proof, and just increments
the counter. In other words, we have a PSPACE language L that has a verifier
circuit V (x, i, c) = 1 iff c is the i-th state of computation in M(x).

We note that if we didn’t have the uniqueness guarantee we would not have
hardness PPAD, but it would be sufficient for hardness in PLS

3

