Quiz 9 - COMS E6261: Advanced Cryptography

Question 1

Suppose you have a proof system (P, V) for some language L, which on input
x (given to both P and V') works as follows:

Round 1: P sends a message a to V' Round 2: V selects 8 (of poly(|z|)
length) uniformly at random and sends to P Round 3: P answers with ~y

Output: V(z,a,8,7) € {0,1}

We now apply the Fiat-Shamir transformation to this proof system, us-
ing hash function H. Doing this yields the following non-interactive protocol
(P, V") (where both P, V' have input z, and both share access to H):

Round 1: P’ sends a, (generated appropriately - details skipped).

Output: V' first sets

‘BzH(x,a)‘or‘ﬁ:H(x)‘

then outputs V (z, a, 3,7)

Question 2

Suppose a language L is in unique NP, that is, for x € L, there exists a unique
certificate 7 accepted by the NP-verifiyng machine.
Then L has a (0,0)-unambiguously sound interactive protocol.

® True
O False

Explanation: Any NP language has an interactive proof, where the prover
just sends the certificate. However, since L has unique certificates, if the prover
does anything but send the single possible certificate for an instance in the
language, the verifier will reject with probability 1.

Question 3

The rest of the questions have to do with taking a hard language L in PSPACE
(can be computed by a polynomial-space machine M) and, assuming some ad-
ditional structure, deriving a hard problem in TFNP. Let L be such a language,
decided by poly-space TM M.

Recall from Jiagian’s presentation that the computation of M on an input x
can be transformed into an end-of-line-style search problem on an exponentially
sized graph G, where a vertex contains M’s state along with the the contents
of M’s tapes. The successor circuit S simulates M on the given tape contents,
outputting the next state. The ”source” node is the state ¢y of M along with
an input tape containing x and an empty working tape. The ”sink” that is the
desired object of the search problem is the vertex where S outputs the same
vertex (that is, M halts), as it will contain the final output of M (x).

The above reduction (from a machine M and input z to a graph G encoded
by the successor circuit S) reduces deciding membership in L to a problem in:

O FNP
O TFNP
O PPAD n PLS

(check all that apply)

Explanation: None of the above; first of all, a simple sanity check should
remind us that we shouldn’t expect to take any problem in PSPACE, a class
which contains the whole polynomial hierarchy, and reduce it to any problem in
TFNP, or even FNP. Even though the reduction above does “reduce” a PSPACE
language to a graph sink problem, there is no way to verify that the sink node is
a “valid” sink. For example, one could immediately offer the vertices (gpas, 2, 0)
and (gnait, z, 1) as “sinks” (say M halts in both these states), but you have no
way of knowing which one lies on the ”true” path that emanates from (go, ,).

Question 4

Next, suppose that for a PSPACE language L decided by machine M, we ad-
ditionally assume we have the following structure: there also exists a circuit V'
that takes as input x, a possible configuration ¢ of M, and a “candidate proof”
7, where for any x, ¢, there exists a proof = such that V(z,¢,7) = 1 if and only
if ¢ is a valid state in the computation path of M starting on input x. More-
over, assume that if such a 7 exists, it is unique (in other words, for all z, ¢, if
¢ is on the computation path of M (x), there exists a unique proof = such that
V(x,c,m) =1, and if ¢ is not on the computation path, then no such 7 exists).

For such a language L, deciding membership in L certainly reduces to a
search problem in:

¥ FNP
¥ TFNP
O PLS N PPAD

(check all that apply)

Explanation: Since M decides L, and given that such a V exists, for all
strings = there must be a ”proof” 7 for the final halting state of M (x), which
is an NP certificate for either its membership in L, or for its non-membership
in L; the search problem of finding 7 therefore reduces the problem to a TFNP
problem. However we cannot say anything more about the structure of this
search problem. It is easy to think that V means we now have a graph end-
of-line like total search problem, but note that we did not assume that we can
generate a proof the next state from the current state, so in particular, it is not
clear how to define a meaningful successor circuit.

We also note that the answer would not change even if we did not have the
uniqueness guarantee

Question 5

Now assume that in addition to all the assumptions from the previous problem,
there exists a circuit S that given input z, configuration ¢ and proof 7 such that
V(z,e,m) = 1, outputs the next configuration ¢’ in the computation path M (x)
along with a proof ©’ such that V(z,¢,n’) = 1.

For such a language L, deciding membership in L certainly reduces to a
search problem in:

v FNP
v TENP
¥ PLS N PPAD

(check all that apply)
Hint: if such proofs 7 exist, can we augment them to remember how ”far
along” we are in the computation path M (z)?

Explanation: Although not necessarily obvious at first sight, this gives us ex-
actly the SVL promise problem scenario. This is because if such ”incrementally
computable” proofs exist, then we can augment the proofs to contain the dis-
tance ¢ from the beginning of the computation path (that is, ¢ = 0 for the state
that has ¢g and an empty working tape); the new” successor circuit applies the
old one to the part of the proof that is the original proof, and just increments
the counter. In other words, we have a PSPACE language L that has a verifier
circuit V(z,i,¢) = 1 iff ¢ is the i-th state of computation in M (x).

We note that if we didn’t have the uniqueness guarantee we would not have
hardness PPAD, but it would be sufficient for hardness in PLS

